Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from What's Right and Learning from What's Wrong (2112.14045v1)

Published 28 Dec 2021 in cs.LO

Abstract: The concept of updating (or conditioning or revising) a probability distribution is fundamental in (machine) learning and in predictive coding theory. The two main approaches for doing so are called Pearl's rule and Jeffrey's rule. Here we make, for the first time, mathematically precise what distinguishes them: Pearl's rule increases validity (expected value) and Jeffrey's rule decreases (Kullback-Leibler) divergence. This forms an instance of a more general distinction between learning from what's right and learning from what's wrong. The difference between these two approaches is illustrated in a mock cognitive scenario.

Citations (6)

Summary

We haven't generated a summary for this paper yet.