Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Holographic Tensor Networks with Bulk Gauge Symmetries (2309.06436v1)

Published 12 Sep 2023 in hep-th

Abstract: Tensor networks are useful toy models for understanding the structure of entanglement in holographic states and reconstruction of bulk operators within the entanglement wedge. They are, however, constrained to only prepare so-called "fixed-area states" with flat entanglement spectra, limiting their utility in understanding general features of holographic entanglement. Here, we overcome this limitation by constructing a variant of random tensor networks that enjoys bulk gauge symmetries. Our model includes a gauge theory on a general graph, whose gauge-invariant states are fed into a random tensor network. We show that the model satisfies the quantum-corrected Ryu-Takayanagi formula with a nontrivial area operator living in the center of a gauge-invariant algebra. We also demonstrate nontrivial, n-dependent contributions to the R\'enyi entropy and R\'enyi mutual information from this area operator, a feature shared by general holographic states.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube