Scalar fields around a loop quantum gravity black hole in de Sitter spacetime: Quasinormal modes, late-time tails and strong cosmic censorship (2309.04962v3)
Abstract: Loop quantum gravity, as one branch of quantum gravity, holds the potential to explore the fundamental nature of black holes. Recently, according to the quantum Oppenheimer-Snyder model in loop quantum cosmology, a novel loop quantum corrected black hole in de Sitter spacetime has been discovered. Here, we first investigate the corresponding quasinormal modes and late-time behavior of massless neutral scalar field perturbations based on such a quantum-modified black hole in de Sitter spacetime. The frequency and time domain analysis of the lowest-lying quasinormal modes is derived by Prony method, Matrix method as well as WKB approximation. The influences of loop quantum correction, the black hole mass ratio, and the cosmological constant on the quasinormal frequencies are studied in detail. The late-time behaviors of quantum-modified black holes possess an exponential decay, which is mainly determined not only by the multipole number but also by the cosmological constant. The impact of loop quantum correction on the late-time tail is negligible, but it has a significant impact on damping oscillation. To explore spacetime singularities, we examine the validity of strong cosmic censorship for a near-extremal quantum-modified black hole in de Sitter spacetime. As a result, it is found that the strong cosmic censorship is destroyed as the black hole approaches the near-extremal limit, but the violation becomes weaker as the cosmological constant and the loop quantum correction increase.
- C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity, Nucl. Phys. B 442, 593 (1995), [Erratum: Nucl.Phys.B 456, 753–754 (1995)], arXiv:gr-qc/9411005 .
- A. Ashtekar and J. Lewandowski, Quantum theory of geometry. 2. Volume operators, Adv. Theor. Math. Phys. 1, 388 (1998), arXiv:gr-qc/9711031 .
- M. Han, Y. Ma, and W. Huang, Fundamental structure of loop quantum gravity, International Journal of Modern Physics D 16, 1397 (2007).
- A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of the big bang: Improved dynamics, Phys. Rev. D 74, 084003 (2006).
- A. Ashtekar and P. Singh, Loop quantum cosmology: a status report, Classical and Quantum Gravity 28, 213001 (2011).
- C. Zhang, S. Song, and M. Han, First-Order Quantum Correction in Coherent State Expectation Value of Loop-Quantum-Gravity Hamiltonian, Phys. Rev. D 105, 064008 (2022a), arXiv:2102.03591 [gr-qc] .
- C. Zhang, H. Liu, and M. Han, Fermions in Loop Quantum Gravity and Resolution of Doubling Problem, (2022b), arXiv:2212.00933 [gr-qc] .
- D.-W. Chiou, Phenomenological loop quantum geometry of the Schwarzschild black hole, Phys. Rev. D 78, 064040 (2008a), arXiv:0807.0665 [gr-qc] .
- R. Gambini and J. Pullin, Black holes in loop quantum gravity: The complete space-time, Phys. Rev. Lett. 101, 161301 (2008).
- H. M. Haggard and C. Rovelli, Quantum-gravity effects outside the horizon spark black to white hole tunneling, Phys. Rev. D 92, 104020 (2015), arXiv:1407.0989 [gr-qc] .
- A. Ashtekar, J. Olmedo, and P. Singh, Quantum Transfiguration of Kruskal Black Holes, Phys. Rev. Lett. 121, 241301 (2018), arXiv:1806.00648 [gr-qc] .
- M. Han, C. Rovelli, and F. Soltani, Geometry of the black-to-white hole transition within a single asymptotic region, Phys. Rev. D 107, 064011 (2023), arXiv:2302.03872 [gr-qc] .
- T. Stachowiak and M. Szydlowski, Exact solutions in bouncing cosmology, Phys. Lett. B 646, 209 (2007), arXiv:gr-qc/0610121 .
- A. Ashtekar and M. Bojowald, Quantum geometry and the Schwarzschild singularity, Class. Quant. Grav. 23, 391 (2006), arXiv:gr-qc/0509075 .
- L. Modesto, Loop quantum black hole, Class. Quant. Grav. 23, 5587 (2006), arXiv:gr-qc/0509078 .
- M. Bojowald and S. Brahma, Signature change in two-dimensional black-hole models of loop quantum gravity, Phys. Rev. D 98, 026012 (2018), arXiv:1610.08850 [gr-qc] .
- D.-W. Chiou, Phenomenological dynamics of loop quantum cosmology in Kantowski-Sachs spacetime, Phys. Rev. D 78, 044019 (2008b), arXiv:0803.3659 [gr-qc] .
- C. Zhang, Y. Ma, and J. Yang, Black hole image encoding quantum gravity information, Phys. Rev. D 108, 104004 (2023), arXiv:2302.02800 [gr-qc] .
- J. Yang, C. Zhang, and Y. Ma, Shadow and stability of quantum-corrected black holes, Eur. Phys. J. C 83, 619 (2023), arXiv:2211.04263 [gr-qc] .
- S. Gossan, J. Veitch, and B. S. Sathyaprakash, Bayesian model selection for testing the no-hair theorem with black hole ringdowns, Phys. Rev. D 85, 124056 (2012), arXiv:1111.5819 [gr-qc] .
- I. Ota and C. Chirenti, Overtones or higher harmonics? Prospects for testing the no-hair theorem with gravitational wave detections, Phys. Rev. D 101, 104005 (2020), arXiv:1911.00440 [gr-qc] .
- Z. Carson and K. Yagi, Probing Einstein-dilaton Gauss-Bonnet Gravity with the inspiral and ringdown of gravitational waves, Phys. Rev. D 101, 104030 (2020), arXiv:2003.00286 [gr-qc] .
- C.-Y. Shao, Y. Hu, and C.-G. Shao, Parameter estimation for Einstein-dilaton-Gauss-Bonnet gravity with ringdown signals*, Chin. Phys. C 47, 105101 (2023), arXiv:2307.02084 [gr-qc] .
- E. Berti et al., Testing General Relativity with Present and Future Astrophysical Observations, Class. Quant. Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc] .
- R. A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys. 83, 793 (2011).
- A. Ori, Oscillatory null singularity inside realistic spinning black holes, Phys. Rev. Lett. 83, 5423 (1999), arXiv:gr-qc/0103012 .
- E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41, 1796 (1990).
- K. Destounis, R. D. B. Fontana, and F. C. Mena, Accelerating black holes: quasinormal modes and late-time tails, Phys. Rev. D 102, 044005 (2020a), arXiv:2005.03028 [gr-qc] .
- K. Destounis, R. D. B. Fontana, and F. C. Mena, Stability of the Cauchy horizon in accelerating black-hole spacetimes, Phys. Rev. D 102, 104037 (2020b), arXiv:2006.01152 [gr-qc] .
- M. Zhang and J. Jiang, Strong Cosmic Censorship in accelerating spacetime, Sci. China Phys. Mech. Astron. 66, 280412 (2023), arXiv:2302.04738 [gr-qc] .
- O. J. C. Dias, H. S. Reall, and J. E. Santos, Strong cosmic censorship for charged de Sitter black holes with a charged scalar field, Class. Quant. Grav. 36, 045005 (2019), arXiv:1808.04832 [gr-qc] .
- K. Destounis, Charged Fermions and Strong Cosmic Censorship, Phys. Lett. B 795, 211 (2019), arXiv:1811.10629 [gr-qc] .
- O. Dias, H. S. Reall, and J. E. Santos, Strong cosmic censorship: taking the rough with the smooth, Journal of High Energy Physics 2018, 1 (2018a).
- M. Rahman, On the validity of Strong Cosmic Censorship Conjecture in presence of Dirac fields, Eur. Phys. J. C 80, 360 (2020), arXiv:1905.06675 [gr-qc] .
- M. Casals and C. I. S. Marinho, Glimpses of violation of strong cosmic censorship in rotating black holes, Phys. Rev. D 106, 044060 (2022), arXiv:2006.06483 [gr-qc] .
- S. Hollands, R. M. Wald, and J. Zahn, Quantum instability of the Cauchy horizon in Reissner–Nordström–deSitter spacetime, Class. Quant. Grav. 37, 115009 (2020), arXiv:1912.06047 [gr-qc] .
- V. Ferrari and B. Mashhoon, New approach to the quasinormal modes of a black hole, Phys. Rev. D30, 295 (1984).
- E. W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A402, 285 (1985).
- C. Gundlach, R. H. Price, and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D49, 883 (1994), arXiv:arXiv:gr-qc/9307009 [gr-qc] .
- K. Lin and W.-L. Qian, A Matrix Method for Quasinormal Modes: Schwarzschild Black Holes in Asymptotically Flat and (Anti-) de Sitter Spacetimes, Class. Quant. Grav. 34, 095004 (2017), arXiv:arXiv:1610.08135 [gr-qc] .
- B. F. Schutz and C. M. Will, Black hole normal modes: a semianalytic approach, Astrophys. J. 291, L33 (1985a).
- K. D. Kokkotas and B. F. Schutz, Black-hole normal modes: A wkb approach. iii. the reissner-nordström black hole, Phys. Rev. D37, 3378 (1988).
- S. Iyer and C. M. Will, Black-hole normal modes: A wkb approach. i. foundations and application of a higher-order wkb analysis of potential-barrier scattering, Phys. Rev. D35, 3621 (1987a).
- S. Iyer and C. M. Will, Black-hole normal modes: A wkb approach. i. foundations and application of a higher-order wkb analysis of potential-barrier scattering, Phys. Rev. D 35, 3621 (1987b).
- S. Iyer, Black-hole normal modes: A wkb approach. ii. schwarzschild black holes, Phys. Rev. D 35, 3632 (1987).
- R. A. Konoplya, Quasinormal behavior of the d𝑑ditalic_d-dimensional schwarzschild black hole and the higher order wkb approach, Phys. Rev. D 68, 024018 (2003).
- E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986a).
- E. W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics, J. Math. Phys. 27, 1238 (1986b).
- H. Koyama and A. Tomimatsu, Asymptotic power law tails of massive scalar fields in Reissner-Nordstrom background, Phys. Rev. D 63, 064032 (2001), arXiv:gr-qc/0012022 .
- H.-w. Yu, Decay of massive scalar hair in the background of a black hole with a global monopole, Phys. Rev. D 65, 087502 (2002), arXiv:gr-qc/0201035 .
- E. Poisson, Radiative falloff of a scalar field in a weakly curved space-time without symmetries, Phys. Rev. D 66, 044008 (2002), arXiv:gr-qc/0205018 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.