Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Neutron star cooling with lepton-flavor-violating axions (2309.03889v3)

Published 7 Sep 2023 in hep-ph and astro-ph.HE

Abstract: The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of $|g_{ae\mu}| \lesssim 10{-6}$. For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of $|g_{ae\mu}| \lesssim 10{-11}$, competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. J. E. Kim, Phys. Rept. 150, 1 (1987).
  2. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
  3. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
  4. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
  5. J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
  6. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B 166, 493 (1980).
  7. A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).
  8. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104, 199 (1981).
  9. S. Borsanyi et al., Nature 539, 69 (2016), arXiv:1606.07494 [hep-lat] .
  10. M. Gorghetto and G. Villadoro, JHEP 03, 033, arXiv:1812.01008 [hep-ph] .
  11. P. Svrcek and E. Witten, JHEP 06, 051, arXiv:hep-th/0605206 .
  12. A. Ringwald, J. Phys. Conf. Ser. 485, 012013 (2014), arXiv:1209.2299 [hep-ph] .
  13. M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).
  14. L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983).
  15. J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).
  16. E. G. M. Ferreira, Astron. Astrophys. Rev. 29, 7 (2021), arXiv:2005.03254 [astro-ph.CO] .
  17. L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  18. D. J. E. Marsh, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
  19. P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021), arXiv:2003.02206 [hep-ph] .
  20. R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
  21. G. G. Raffelt, Phys. Rept. 198, 1 (1990).
  22. A. Burrows, M. S. Turner, and R. P. Brinkmann, Phys. Rev. D 39, 1020 (1989).
  23. A. Burrows, M. T. Ressell, and M. S. Turner, Phys. Rev. D 42, 3297 (1990).
  24. C. Hanhart, D. R. Phillips, and S. Reddy, Phys. Lett. B 499, 9 (2001), arXiv:astro-ph/0003445 .
  25. A. Davidson and K. C. Wali, Phys. Rev. Lett. 48, 11 (1982).
  26. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982).
  27. A. A. Anselm, N. G. Uraltsev, and M. Y. Khlopov, Sov. J. Nucl. Phys. 41, 1060 (1985).
  28. M. Bauer, T. Schell, and T. Plehn, Phys. Rev. D 94, 056003 (2016), arXiv:1603.06950 [hep-ph] .
  29. L. Calibbi and G. Signorelli, Riv. Nuovo Cim. 41, 71 (2018), arXiv:1709.00294 [hep-ph] .
  30. A. M. Baldini et al. (MEG), Eur. Phys. J. C 76, 434 (2016), arXiv:1605.05081 [hep-ex] .
  31. U. Bellgardt et al. (SINDRUM), Nucl. Phys. B 299, 1 (1988).
  32. A. Jodidio et al., Phys. Rev. D 34, 1967 (1986), [Erratum: Phys.Rev.D 37, 237 (1988)].
  33. R. Bayes et al. (TWIST), Phys. Rev. D 91, 052020 (2015), arXiv:1409.0638 [hep-ex] .
  34. A. M. Baldini et al. (MEG II), Eur. Phys. J. C 78, 380 (2018), arXiv:1801.04688 [physics.ins-det] .
  35. Y. Jho, S. Knapen, and D. Redigolo, JHEP 10, 029, arXiv:2203.11222 [hep-ph] .
  36. A.-K. Perrevoort (Mu3e), SciPost Phys. Proc. 1, 052 (2019), arXiv:1812.00741 [hep-ex] .
  37. M. Linster and R. Ziegler, JHEP 08, 058, arXiv:1805.07341 [hep-ph] .
  38. C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979).
  39. M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B 398, 319 (1993), arXiv:hep-ph/9212278 .
  40. M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B 420, 468 (1994), arXiv:hep-ph/9310320 .
  41. Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. B 98, 265 (1981).
  42. J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 774 (1982).
  43. F. Björkeroth, E. J. Chun, and S. F. King, JHEP 08, 117, arXiv:1806.00660 [hep-ph] .
  44. S. E. Derenzo, Phys. Rev. 181, 1854 (1969).
  45. D. A. Bryman and E. T. H. Clifford, Phys. Rev. Lett. 57, 2787 (1986).
  46. A. Aguilar-Arevalo et al. (PIENU), Phys. Rev. D 101, 052014 (2020), arXiv:2002.09170 [hep-ex] .
  47. F. D’Eramo and S. Yun, Phys. Rev. D 105, 075002 (2022), arXiv:2111.12108 [hep-ph] .
  48. H. Albrecht et al. (ARGUS), Z. Phys. C 68, 25 (1995).
  49. W. Altmannshofer et al. (Belle-II), PTEP 2019, 123C01 (2019), [Erratum: PTEP 2020, 029201 (2020)], arXiv:1808.10567 [hep-ex] .
  50. K. N. Abazajian et al. (CMB-S4),   (2016), arXiv:1610.02743 [astro-ph.CO] .
  51. K. Abazajian et al.,   (2019), arXiv:1907.04473 [astro-ph.IM] .
  52. D. G. Yakovlev and C. J. Pethick, Ann. Rev. Astron. Astrophys. 42, 169 (2004), arXiv:astro-ph/0402143 .
  53. A. Y. Potekhin, J. A. Pons, and D. Page, Space Sci. Rev. 191, 239 (2015), arXiv:1507.06186 [astro-ph.HE] .
  54. C. J. Horowitz, J. Piekarewicz, and B. Reed, Phys. Rev. C 102, 044321 (2020), arXiv:2007.07117 [nucl-th] .
  55. B. L. Friman and O. V. Maxwell, Astrophys. J. 232, 541 (1979).
  56. L. B. Leinson, Phys. Rev. C 79, 045502 (2009), arXiv:0904.0320 [astro-ph.HE] .
  57. L. B. Leinson, Phys. Rev. C 81, 025501 (2010), arXiv:0912.2164 [astro-ph.SR] .
  58. D. N. Voskresensky and A. V. Senatorov, Sov. Phys. JETP 63, 885 (1986).
  59. H. Grigorian, D. N. Voskresensky, and D. Blaschke, Eur. Phys. J. A 52, 67 (2016), arXiv:1603.02634 [astro-ph.HE] .
  60. N. Iwamoto, Phys. Rev. Lett. 53, 1198 (1984).
  61. R. P. Brinkmann and M. S. Turner, Phys. Rev. D 38, 2338 (1988).
  62. C. J. Pethick, Rev. Mod. Phys. 64, 1133 (1992).
  63. N. Iwamoto, Phys. Rev. D 64, 043002 (2001).
  64. G. Baym and C. Pethick, Landau Fermi-liquid theory: concepts and applications (John Wiley & Sons, 2008).
  65. G. Raffelt and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).
  66. V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 256, 107478 (2020), arXiv:2001.04407 [hep-ph] .
  67. G. P. Lepage, J. Comput. Phys. 439, 110386 (2021), arXiv:2009.05112 [physics.comp-ph] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.