Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The complexity of solving a random polynomial system (2309.03855v2)

Published 7 Sep 2023 in cs.CR, math.AG, and math.CO

Abstract: A multivariate cryptograpic instance in practice is a multivariate polynomial system. So the security of a protocol rely on the complexity of solving a multivariate polynomial system. In this paper there is an overview on a general algorithm used to solve a multivariate system and the quantity to which the complexity of this algorithm depends on: the solving degree. Unfortunately, it is hard to compute. For this reason, it is introduced an invariant: the degree of regularity. This invariant, under certain condition, give us an upper bound on the solving degree. Then we speak about random polynomial systems and in particular what "random" means to us. Finally, we give an upper bound on both the degree of regularity and the solving degree of such random systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Giulia Gaggero (2 papers)
  2. Elisa Gorla (43 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.