Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Degree Bounds For Iterated Polynomial Systems (2310.03637v2)

Published 5 Oct 2023 in cs.CR and math.AC

Abstract: For Arithmetization-Oriented ciphers and hash functions Gr\"obner basis attacks are generally considered as the most competitive attack vector. Unfortunately, the complexity of Gr\"obner basis algorithms is only understood for special cases, and it is needless to say that these cases do not apply to most cryptographic polynomial systems. Therefore, cryptographers have to resort to experiments, extrapolations and hypotheses to assess the security of their designs. One established measure to quantify the complexity of linear algebra-based Gr\"obner basis algorithms is the so-called solving degree. Caminata & Gorla revealed that under a certain genericity condition on a polynomial system the solving degree is always upper bounded by the Castelnuovo-Mumford regularity and henceforth by the Macaulay bound, which only takes the degrees and number of variables of the input polynomials into account. In this paper we extend their framework to iterated polynomial systems, the standard polynomial model for symmetric ciphers and hash functions. In particular, we prove solving degree bounds for various attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash, Hades and GMiMC. Our bounds fall in line with the hypothesized complexity of Gr\"obner basis attacks on these designs, and to the best of our knowledge this is the first time that a mathematical proof for these complexities is provided. Moreover, by studying polynomials with degree falls we can prove lower bounds on the Castelnuovo-Mumford regularity for attacks on MiMC, Feistel-MiMC and Feistel-MiMC-Hash provided that only a few solutions of the corresponding iterated polynomial system originate from the base field. Hence, regularity-based solving degree estimations can never surpass a certain threshold, a desirable property for cryptographic polynomial systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.