Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Min-max optimization over slowly time-varying graphs (2309.03769v1)

Published 7 Sep 2023 in math.OC

Abstract: Distributed optimization is an important direction of research in modern optimization theory. Its applications include large scale machine learning, distributed signal processing and many others. The paper studies decentralized min-max optimization for saddle point problems. Saddle point problems arise in training adversarial networks and in robust machine learning. The focus of the work is optimization over (slowly) time-varying networks. The topology of the network changes from time to time, and the velocity of changes is limited. We show that, analogically to decentralized optimization, it is sufficient to change only two edges per iteration in order to slow down convergence to the arbitrary time-varying case. At the same time, we investigate several classes of time-varying graphs for which the communication complexity can be reduced.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.