Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Directionality-Aware Mixture Model Parallel Sampling for Efficient Linear Parameter Varying Dynamical System Learning (2309.02609v3)

Published 5 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: The Linear Parameter Varying Dynamical System (LPV-DS) is an effective approach that learns stable, time-invariant motion policies using statistical modeling and semi-definite optimization to encode complex motions for reactive robot control. Despite its strengths, the LPV-DS learning approach faces challenges in achieving a high model accuracy without compromising the computational efficiency. To address this, we introduce the Directionality-Aware Mixture Model (DAMM), a novel statistical model that applies the Riemannian metric on the n-sphere $\mathbb{S}n$ to efficiently blend non-Euclidean directional data with $\mathbb{R}m$ Euclidean states. Additionally, we develop a hybrid Markov chain Monte Carlo technique that combines Gibbs Sampling with Split/Merge Proposal, allowing for parallel computation to drastically speed up inference. Our extensive empirical tests demonstrate that LPV-DS integrated with DAMM achieves higher reproduction accuracy, better model efficiency, and near real-time/online learning compared to standard estimation methods on various datasets. Lastly, we demonstrate its suitability for incrementally learning multi-behavior policies in real-world robot experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. Ude, “Trajectory generation from noisy positions of object features for teaching robot paths,” Robotics and Autonomous Systems, vol. 11, no. 2, pp. 113–127, 1993.
  2. J.-H. Hwang, R. Arkin, and D.-S. Kwon, “Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control,” vol. 2, 11 2003, pp. 1444 – 1449 vol.2.
  3. J. Aleotti and S. Caselli, “Robust trajectory learning and approximation for robot programming by demonstration,” Robotics and Autonomous Systems, vol. 54, no. 5, pp. 409–413, 2006.
  4. E. Gribovskaya, S.-M. Khansari-Zadeh, and A. Billard, “Learning non-linear multivariate dynamics of motion in robotic manipulators,” IJRR, vol. 30, no. 1, pp. 80–117, 2011.
  5. S. M. Khansari-Zadeh and A. Billard, “Learning stable non-linear dynamical systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
  6. J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflow: Learning deep stable stochastic dynamic systems by normalizing flows,” in 2020 IEEE/RSJ IROS, 2020, pp. 5231–5237.
  7. M. A. Rana, A. Li, D. Fox, B. Boots, F. Ramos, and N. Ratliff, “Euclideanizing flows: Diffeomorphic reduction for learning stable dynamical systems,” in Proc. of the 2nd Conference on Learning for Dynamics and Control, vol. 120.   PMLR, Jun 2020, pp. 630–639.
  8. R. Pérez-Dattari and J. Kober, “Stable motion primitives via imitation and contrastive learning,” IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3909–3928, 2023.
  9. N. Figueroa and A. Billard, “A physically-consistent bayesian non-parametric mixture model for dynamical system learning,” in Proc. of The 2nd Conference on Robot Learning, vol. 87.   PMLR, 2018, pp. 927–948.
  10. D. Blei and P. Frazier, “Distance dependent chinese restaurant processes,” Journal of Machine Learning Research, vol. 12, pp. 2461–2488, 08 2011.
  11. J. Straub, J. Chang, O. Freifeld, and J. Fisher III, “A Dirichlet Process Mixture Model for Spherical Data,” in Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, vol. 38.   PMLR, 09–12 May 2015, pp. 930–938.
  12. S. M. Khansari-Zadeh and A. Billard, “Learning control lyapunov function to ensure stability of dynamical system-based robot reaching motions,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 752–765, 2014.
  13. M. Arnaudon, F. Barbaresco, and L. Yang, “Medians and means in riemannian geometry: Existence, uniqueness and computation,” 11 2011.
  14. X. Pennec, “Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements,” Journal of Mathematical Imaging and Vision, vol. 25, pp. 127–154, 07 2006.
  15. M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G. Caldwell, “An approach for imitation learning on riemannian manifolds,” IEEE RA-L, vol. 2, no. 3, pp. 1240–1247, 2017.
  16. S. Calinon, “Gaussians on riemannian manifolds: Applications for robot learning and adaptive control,” IEEE Robotics & Automation Magazine, vol. 27, no. 2, pp. 33–45, 2020.
  17. R. M. Neal, “Markov chain sampling methods for dirichlet process mixture models,” Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 249–265, 2000.
  18. K. P. Murphy, “Conjugate bayesian analysis of the Gaussian distribution,” 2007.
  19. J. Sethuraman, “A constructive definition of dirichlet priors,” Statistica Sinica, vol. 4, no. 2, pp. 639–650, 1994.
  20. J. Chang and J. W. Fisher III, “Parallel sampling of DP mixture models using sub-cluster splits,” in Advances in Neural Information Processing Systems, vol. 26, 2013.
  21. S. Jain and R. M. Neal, “A split-merge markov chain monte carlo procedure for the dirichlet process mixture model,” Journal of Computational and Graphical Statistics, vol. 13, no. 1, pp. 158–182, 2004.
  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” 3 1953.
  23. W. K. Hastings, “Monte carlo sampling methods using markov chains and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.
  24. J. R. Medina and A. Billard, “Learning stable task sequences from demonstration with linear parameter varying systems and hidden markov models,” in Proceedings of the 1st Annual Conference on Robot Learning, vol. 78.   PMLR, 13–15 Nov 2017, pp. 175–184.
Citations (1)

Summary

We haven't generated a summary for this paper yet.