Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Complex Motion Plans using Neural ODEs with Safety and Stability Guarantees (2308.00186v3)

Published 31 Jul 2023 in cs.RO, cs.SY, and eess.SY

Abstract: We propose a Dynamical System (DS) approach to learn complex, possibly periodic motion plans from kinesthetic demonstrations using Neural Ordinary Differential Equations (NODE). To ensure reactivity and robustness to disturbances, we propose a novel approach that selects a target point at each time step for the robot to follow, by combining tools from control theory and the target trajectory generated by the learned NODE. A correction term to the NODE model is computed online by solving a quadratic program that guarantees stability and safety using control Lyapunov functions and control barrier functions, respectively. Our approach outperforms baseline DS learning techniques on the LASA handwriting dataset and complex periodic trajectories. It is also validated on the Franka Emika robot arm to produce stable motions for wiping and stirring tasks that do not have a single attractor, while being robust to perturbations and safe around humans and obstacles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. R. Ma, J. Chen, and J. Oyekan, “A learning from demonstration framework for adaptive task and motion planning in varying package-to-order scenarios,” Robotics and Computer-Integrated Manufacturing, vol. 82, p. 102539, 2023.
  2. J. Yang, J. Zhang, C. Settle, A. Rai, R. Antonova, and J. Bohg, “Learning periodic tasks from human demonstrations,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8658–8665.
  3. S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
  4. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: learning attractor models for motor behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.
  5. B. Akgun and K. Subramanian, “Robot learning from demonstration : Kinesthetic teaching vs . teleoperation,” 2011.
  6. P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in Proceedings of the twenty-first international conference on Machine learning, 2004, p. 1.
  7. M. C. Priess, J. Choi, and C. Radcliffe, “The inverse problem of continuous-time linear quadratic gaussian control with application to biological systems analysis,” in Dynamic Systems and Control Conference, vol. 46209.   American Society of Mechanical Engineers, 2014, p. V003T42A004.
  8. T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al., “An algorithmic perspective on imitation learning,” Foundations and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.
  9. S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured prediction to no-regret online learning,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.
  10. T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep imitation learning for complex manipulation tasks from virtual reality teleoperation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 5628–5635.
  11. N. Jaquier, D. Ginsbourger, and S. Calinon, “Learning from demonstration with model-based gaussian process. arxiv preprint arxiv: 191005005,” 2019.
  12. N. Figueroa and A. Billard, “A physically-consistent bayesian non-parametric mixture model for dynamical system learning,” in Proceedings of The 2nd Conference on Robot Learning, ser. Proceedings of Machine Learning Research, vol. 87.   PMLR, 29–31 Oct 2018, pp. 927–946.
  13. S. S. Mirrazavi Salehian, N. Figueroa, and A. Billard, “A unified framework for coordinated multi-arm motion planning,” The International Journal of Robotics Research, vol. 37, no. 10, pp. 1205–1232, 2018.
  14. N. Figueroa, S. Faraji, M. Koptev, and A. Billard, “A dynamical system approach for adaptive grasping, navigation and co-manipulation with humanoid robots,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 7676–7682.
  15. N. Figueroa and A. Billard, “Locally active globally stable dynamical systems: Theory, learning, and experiments,” The International Journal of Robotics Research, vol. 41, no. 3, pp. 312–347, 2022.
  16. J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflow: Learning deep stable stochastic dynamic systems by normalizing flows,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 5231–5237.
  17. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European control conference (ECC).   IEEE, 2019, pp. 3420–3431.
  18. Y. Wang, N. Figueroa, S. Li, A. Shah, and J. Shah, “Temporal logic imitation: Learning plan-satisficing motion policies from demonstrations,” in 6th Annual Conference on Robot Learning, 2022. [Online]. Available: https://openreview.net/forum?id=ndYsaoyzCWv
  19. S. M. Khansari-Zadeh and A. Billard, “Learning control lyapunov function to ensure stability of dynamical system-based robot reaching motions,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 752–765, 2014.
  20. A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, “Learning control barrier functions from expert demonstrations,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 3717–3724.
  21. K. Kronander and A. Billard, “Passive interaction control with dynamical systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 106–113, 2016.
  22. R. T. Chen, B. Amos, and M. Nickel, “Learning neural event functions for ordinary differential equations,” arXiv preprint arXiv:2011.03902, 2020.
  23. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential equations,” 2019.
  24. E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse problems, vol. 34, no. 1, p. 014004, 2017.
  25. J. C. Butcher, “A history of runge-kutta methods,” Applied numerical mathematics, vol. 20, no. 3, pp. 247–260, 1996.
  26. P. Kidger, “On neural differential equations,” arXiv preprint arXiv:2202.02435, 2022.
  27. S. Purwar, I. N. Kar, and A. N. Jha, “Adaptive output feedback tracking control of robot manipulators using position measurements only,” Expert systems with applications, vol. 34, no. 4, pp. 2789–2798, 2008.
  28. B. Xiao, L. Cao, S. Xu, and L. Liu, “Robust tracking control of robot manipulators with actuator faults and joint velocity measurement uncertainty,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1354–1365, 2020.
  29. A. Singletary, K. Klingebiel, J. Bourne, A. Browning, P. Tokumaru, and A. Ames, “Comparative analysis of control barrier functions and artificial potential fields for obstacle avoidance,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 8129–8136.
  30. Y. Chen, L. Chen, J. Ding, and Y. Liu, “Research on real-time obstacle avoidance motion planning of industrial robotic arm based on artificial potential field method in joint space,” Applied Sciences, vol. 13, no. 12, p. 6973, 2023.
  31. S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach to realtime obstacle avoidance,” Autonomous Robots, vol. 32, pp. 433–454, 2012.
  32. H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance,” in 2009 IEEE international conference on robotics and automation.   IEEE, 2009, pp. 2587–2592.
  33. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
  34. S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.
  35. H. C. Ravichandar and A. Dani, “Learning position and orientation dynamics from demonstrations via contraction analysis,” Autonomous Robots, vol. 43, no. 4, pp. 897–912, 2019.
  36. J. Zhang, H. B. Mohammadi, and L. Rozo, “Learning riemannian stable dynamical systems via diffeomorphisms,” in 6th Annual Conference on Robot Learning, 2022.
  37. J. Urain, D. Tateo, and J. Peters, “Learning stable vector fields on lie groups,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 12 569–12 576, 2022.
  38. Y. Shavit, N. Figueroa, S. S. M. Salehian, and A. Billard, “Learning augmented joint-space task-oriented dynamical systems: A linear parameter varying and synergetic control approach,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2718–2725, 2018.
  39. D. Totsila, K. Chatzilygeroudis, D. Hadjivelichkov, V. Modugno, I. Hatzilygeroudis, and D. Kanoulas, “End-to-end stable imitation learning via autonomous neural dynamic policies,” arXiv preprint arXiv:2305.12886, 2023.
  40. S. Bahl, M. Mukadam, A. Gupta, and D. Pathak, “Neural dynamic policies for end-to-end sensorimotor learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 5058–5069, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com