Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Neural Network Solutions of Bosonic Quantum Systems in One Dimension (2309.02352v1)

Published 5 Sep 2023 in nucl-th, cond-mat.dis-nn, cond-mat.quant-gas, and quant-ph

Abstract: Neural networks have been proposed as efficient numerical wavefunction ansatze which can be used to variationally search a wide range of functional forms for ground state solutions. These neural network methods are also advantageous in that more variational parameters and system degrees of freedom can be easily added. We benchmark the methodology by using neural networks to study several different integrable bosonic quantum systems in one dimension and compare our results to the exact solutions. While testing the scalability of the procedure to systems with many particles, we also introduce using symmetric function inputs to the neural network to enforce exchange symmetries of indistinguishable particles.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.