Cosmological Constraints on Thermal Friction of Axion Dark Matter (2309.02170v2)
Abstract: In this paper, we investigate the process in which axion dark matter undergoes thermal friction, resulting in energy injection into dark radiation, with the aim of mitigating the Hubble tension and large-scale structure tension. In the early universe, this scenario led to a rapid increase in the energy density of dark radiation; in the late universe, the evolution of axion dark matter is similar to that of cold dark matter, with this scenario resembling decaying dark matter and serving to ease the large-scale structure tension. We employ cosmological observational data, including cosmic microwave background (CMB), baryon acoustic oscillation (BAO), supernova data (SNIa), $H_0$ measurement from SH0ES, and $S_8$ from the Dark Energy Survey Year-3 (DES), to study and analyze this model. Our results indicate that the thermal friction model offers partial alleviation of the large-scale structure tension, while its contribution on alleviating Hubble tension can be ignored. The new model yields the value of $S_8$ is $0.795\pm 0.011$ at a 68% confidence level, while the $\Lambda$CDM model yields a result of $0.8023\pm 0.0085$. In addition, the new model exhibits a lower $\chi2_\mathrm{tot}$ value, with a difference of -2.60 compared to the $\Lambda$CDM model. Additionally, we incorporate Lyman-$\alpha$ data to re-constrain the new model and find a slight improvement in the results, with the values of $H_0$ and $S_8$ being $68.76{+0.39}_{-0.35}$ km/s/Mpc and $0.791\pm 0.011$ at a 68% confidence level, respectively.
- L. Verde, T. Treu, and A. G. Riess, Tensions between the early and late universe, Nature Astronomy 3, 891 (2019).
- W. L. Freedman, Cosmology at at crossroads: Tension with the hubble constant, Nature Astronomy 10.1038/s41550-017-0121 (2017).
- X. Li and A. Shafieloo, A simple phenomenological emergent dark energy model can resolve the hubble tension, The Astrophysical Journal Letters 883, L3 (2019).
- R.-Y. Guo, J.-F. Zhang, and X. Zhang, Can the h0 tension be resolved in extensions to lcdm cosmology?, Journal of Cosmology and Astroparticle Physics 2019 (02), 054.
- E. Di Valentino, E. V. Linder, and A. Melchiorri, Vacuum phase transition solves the H0subscript𝐻0{H}_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension, Phys. Rev. D 97, 043528 (2018).
- A. Banihashemi, N. Khosravi, and A. H. Shirazi, Ginzburg-landau theory of dark energy: A framework to study both temporal and spatial cosmological tensions simultaneously, Phys. Rev. D 99, 083509 (2019).
- A. Banihashemi, N. Khosravi, and A. H. Shirazi, Phase transition in the dark sector as a proposal to lessen cosmological tensions, Phys. Rev. D 101, 123521 (2020).
- T. L. Smith, V. Poulin, and M. A. Amin, Oscillating scalar fields and the hubble tension: A resolution with novel signatures, Phys. Rev. D 101, 063523 (2020).
- W. Yang, S. Pan, and A. Paliathanasis, Cosmological constraints on an exponential interaction in the dark sector, Monthly Notices of the Royal Astronomical Society 482, 1007 (2018b).
- K. Vattis, S. M. Koushiappas, and A. Loeb, Dark matter decaying in the late universe can relieve the H0subscript𝐻0{H}_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension, Phys. Rev. D 99, 121302 (2019).
- J. Buch, P. Ralegankar, and V. Rentala, Late decaying 2-component dark matter scenario as an explanation of the ams-02 positron excess, Journal of Cosmology and Astroparticle Physics 2017 (10), 028.
- S. J. Clark, K. Vattis, and S. M. Koushiappas, Cosmological constraints on late-universe decaying dark matter as a solution to the H0subscript𝐻0{H}_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT tension, Phys. Rev. D 103, 043014 (2021).
- K. L. Pandey, T. Karwal, and S. Das, Journal of Cosmology and Astroparticle Physics 2020 (07), 026.
- F. McCarthy and J. C. Hill, Converting dark matter to dark radiation does not solve cosmological tensions (2023), arXiv:2210.14339 [astro-ph.CO] .
- A. El-Zant, W. E. Hanafy, and S. Elgammal, H0 tension and the phantom regime: A case study in terms of an infrared f(t) gravity, The Astrophysical Journal 871, 210 (2019).
- L. O. Téllez-Tovar, T. Matos, and J. A. Vázquez, Cosmological constraints on the multiscalar field dark matter model, Phys. Rev. D 106, 123501 (2022).
- E. G. M. Ferreira, Ultra-light dark matter, The Astronomy and Astrophysics Review 29, 1 (2021).
- L. A. Ureña-López and A. X. Gonzalez-Morales, Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter, Journal of Cosmology and Astroparticle Physics 2016 (07), 048.
- F. X. L. Cedeño, A. X. González-Morales, and L. A. Ureña-López, Cosmological signatures of ultralight dark matter with an axionlike potential, Phys. Rev. D 96, 061301 (2017).
- A. Berera, Warm inflation, Phys. Rev. Lett. 75, 3218 (1995).
- A. Berera and L.-Z. Fang, Thermally induced density perturbations in the inflation era, Phys. Rev. Lett. 74, 1912 (1995).
- A. Berera, I. G. Moss, and R. O. Ramos, Warm inflation and its microphysical basis, Reports on Progress in Physics 72, 026901 (2009).
- K. V. Berghaus, P. W. Graham, and D. E. Kaplan, Minimal warm inflation, Journal of Cosmology and Astroparticle Physics 2020 (03), 034.
- P. W. Graham, D. E. Kaplan, and S. Rajendran, Relaxation of the cosmological constant, Phys. Rev. D 100, 015048 (2019).
- K. V. Berghaus and T. Karwal, Thermal friction as a solution to the hubble tension, Phys. Rev. D 101, 083537 (2020).
- K. V. Berghaus and T. Karwal, Thermal friction as a solution to the hubble and large-scale structure tensions (2022), arXiv:2204.09133 [astro-ph.CO] .
- J. Beyer and C. Wetterich, Small scale structures in coupled scalar field dark matter, Physics Letters B 738, 418 (2014).
- L. Amendola and R. Barbieri, Dark matter from an ultra-light pseudo-goldsone-boson, Physics Letters B 642, 192 (2006).
- L. McLerran, E. Mottola, and M. E. Shaposhnikov, Sphalerons and axion dynamics in high-temperature qcd, Phys. Rev. D 43, 2027 (1991).
- G. D. Moore and M. Tassler, The sphaleron rate in SU(n) gauge theory, Journal of High Energy Physics 2011, 10.1007/jhep02(2011)105 (2011).
- M. Laine and A. Vuorinen, Basics of Thermal Field Theory (Springer International Publishing, 2016).
- E. J. Copeland, A. R. Liddle, and D. Wands, Exponential potentials and cosmological scaling solutions, Phys. Rev. D 57, 4686 (1998).
- J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, Journal of Cosmology and Astroparticle Physics 2016 (02), 037.
- P. G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58, 023503 (1998).
- W. Hu, Structure formation with generalized dark matter, The Astrophysical Journal 506, 485 (1998).
- V. Poulin, P. D. Serpico, and J. Lesgourgues, A fresh look at linear cosmological constraints on a decaying dark matter component, Journal of Cosmology and Astroparticle Physics 2016 (08), 036.
- J. Lesgourgues, The cosmic linear anisotropy solving system (class) i: Overview (2011) arXiv:1104.2932 [astro-ph.IM] .
- D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear anisotropy solving system (CLASS). part II: Approximation schemes, Journal of Cosmology and Astroparticle Physics 2011 (07), 034.
- J. Torrado and A. Lewis, Cobaya: code for bayesian analysis of hierarchical physical models, Journal of Cosmology and Astroparticle Physics 2021 (05), 057.
- A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Statistical Science 7, 457 (1992).
- A. Lewis, Getdist: a python package for analysing monte carlo samples (2019), arXiv:1910.13970 [astro-ph.IM] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.