Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No Data Augmentation? Alternative Regularizations for Effective Training on Small Datasets (2309.01694v1)

Published 4 Sep 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Solving image classification tasks given small training datasets remains an open challenge for modern computer vision. Aggressive data augmentation and generative models are among the most straightforward approaches to overcoming the lack of data. However, the first fails to be agnostic to varying image domains, while the latter requires additional compute and careful design. In this work, we study alternative regularization strategies to push the limits of supervised learning on small image classification datasets. In particular, along with the model size and training schedule scaling, we employ a heuristic to select (semi) optimal learning rate and weight decay couples via the norm of model parameters. By training on only 1% of the original CIFAR-10 training set (i.e., 50 images per class) and testing on ciFAIR-10, a variant of the original CIFAR without duplicated images, we reach a test accuracy of 66.5%, on par with the best state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.