Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A minimal and non-alternative realisation of the Cayley plane (2309.00967v1)

Published 2 Sep 2023 in math.RA

Abstract: The compact 16-dimensional Moufang plane, also known as the Cayley plane, has traditionally been defined through the lens of octonionic geometry. In this study, we present a novel approach, demonstrating that the Cayley plane can be defined in an equally clean, straightforward and more economic way using two different division and composition algebras: the paraoctonions and the Okubo algebra. The result is quite surprising since paraoctonions and Okubo algebra possess a weaker algebraic structure than the octonions, since they are non-alternative and do not uphold the Moufang identities. Intriguingly, the real Okubo algebra has $\text{SU}\left(3\right)$ as automorphism group, which is a classical Lie group, while octonions and paraoctonions have an exceptional Lie group of type $\text{G}_{2}$. This is remarkable, given that the projective plane defined over the real Okubo algebra is nevertheless isomorphic and isometric to the octonionic projective plane which is at the very heart of the geometric realisations of all types of exceptional Lie groups. Despite its historical ties with octonionic geometry, our research underscores the real Okubo algebra as the weakest algebraic structure allowing the definition of the compact 16-dimensional Moufang plane.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.