Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bypassing the Simulator: Near-Optimal Adversarial Linear Contextual Bandits (2309.00814v1)

Published 2 Sep 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We consider the adversarial linear contextual bandit problem, where the loss vectors are selected fully adversarially and the per-round action set (i.e. the context) is drawn from a fixed distribution. Existing methods for this problem either require access to a simulator to generate free i.i.d. contexts, achieve a sub-optimal regret no better than $\widetilde{O}(T{\frac{5}{6}})$, or are computationally inefficient. We greatly improve these results by achieving a regret of $\widetilde{O}(\sqrt{T})$ without a simulator, while maintaining computational efficiency when the action set in each round is small. In the special case of sleeping bandits with adversarial loss and stochastic arm availability, our result answers affirmatively the open question by Saha et al. [2020] on whether there exists a polynomial-time algorithm with $poly(d)\sqrt{T}$ regret. Our approach naturally handles the case where the loss is linear up to an additive misspecification error, and our regret shows near-optimal dependence on the magnitude of the error.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haolin Liu (31 papers)
  2. Chen-Yu Wei (46 papers)
  3. Julian Zimmert (30 papers)
Citations (10)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets