Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Robust Algorithms for Adversarial Linear Contextual Bandits (2002.00287v3)

Published 1 Feb 2020 in cs.LG and stat.ML

Abstract: We consider an adversarial variant of the classic $K$-armed linear contextual bandit problem where the sequence of loss functions associated with each arm are allowed to change without restriction over time. Under the assumption that the $d$-dimensional contexts are generated i.i.d.~at random from a known distributions, we develop computationally efficient algorithms based on the classic Exp3 algorithm. Our first algorithm, RealLinExp3, is shown to achieve a regret guarantee of $\widetilde{O}(\sqrt{KdT})$ over $T$ rounds, which matches the best available bound for this problem. Our second algorithm, RobustLinExp3, is shown to be robust to misspecification, in that it achieves a regret bound of $\widetilde{O}((Kd){1/3}T{2/3}) + \varepsilon \sqrt{d} T$ if the true reward function is linear up to an additive nonlinear error uniformly bounded in absolute value by $\varepsilon$. To our knowledge, our performance guarantees constitute the very first results on this problem setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Gergely Neu (52 papers)
  2. Julia Olkhovskaya (11 papers)
Citations (42)