Probing Quarkyonic Matter in Neutron Stars with the Bayesian Nuclear-Physics Multi-Messenger Astrophysics Framework (2308.15067v2)
Abstract: The interior of neutron stars contains matter at the highest densities realized in our Universe. Interestingly, theoretical studies of dense matter, in combination with the existence of two solar mass neutron stars, indicate that the speed of sound $c_s$ has to increase to values well above the conformal limit ($c_s2\sim 1/3$) before decreasing again at higher densities. The decrease could be explained by either a strong first-order phase transition or a cross-over transition from hadronic to quark matter. The latter scenario leads to a pronounced peak in the speed of sound reaching values above the conformal limit, naturally explaining the inferred behavior. In this work, we use the Nuclear-Physics Multi-Messenger Astrophysics framework \textsc{NMMA} to compare predictions of the quarkyonic matter model with astrophysical observations of neutron stars, with the goal of constraining model parameters. Assuming quarkyonic matter to be realized within neutron stars, we find that there can be a significant amount of quarks inside the core of neutron stars with masses in the two solar mass range, amounting to up to $\sim 0.13M_\odot$, contributing $\sim 5.9\%$ of the total mass. Furthermore, for the quarkyonic matter model investigated here, the radius of a $1.4M_\odot$ neutron star would be $13.44{+1.69}_{-1.54} (13.54{+1.02}_{-1.04})$ km, at $95\%$ credibility, without (with) the inclusion of AT2017gfo.
- F. Ozel and P. Freire, Ann. Rev. Astron. Astrophys. 54, 401 (2016), arXiv:1603.02698 [astro-ph.HE] .
- E. E. Flanagan and T. Hinderer, Phys.Rev. D77, 021502 (2008), arXiv:0709.1915 [astro-ph] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc] .
- A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016), arXiv:1602.01081 [astro-ph.HE] .
- P. Bedaque and A. W. Steiner, Phys. Rev. Lett. 114, 031103 (2015), arXiv:1408.5116 [nucl-th] .
- L. McLerran and S. Reddy, Phys. Rev. Lett. 122, 122701 (2019), arXiv:1811.12503 [nucl-th] .
- S. Sen and L. Sivertsen, Astrophys. J. 915, 109 (2021), arXiv:2011.04681 [astro-ph.HE] .
- B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- B. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 892, L3 (2020), arXiv:2001.01761 [astro-ph.HE] .
- J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
- Astrophys. J. 848, L12 (2017), arXiv:1710.05833 [astro-ph.HE] .
- M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019), arXiv:1912.05705 [astro-ph.HE] .
- T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019), arXiv:1912.05702 [astro-ph.HE] .
- M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE] .
- T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
- Z. Arzoumanian et al. (NANOGrav), Astrophys. J. Suppl. 235, 37 (2018), arXiv:1801.01837 [astro-ph.HE] .
- T. Zhao and J. M. Lattimer, Phys. Rev. D 102, 023021 (2020).
- A. Kumar, D. Dey, S. Haque, R. Mallick, and S. K. Patra, “Quarkyonic model for neutron star matter: A relativistic mean-field approach,” (2023), arXiv:2304.08223 [nucl-th] .
- C.-J. Xia, H.-M. Jin, and T.-T. Sun, “Quarkyonic matter and quarkyonic stars in an extended rmf model,” (2023), arXiv:2307.03032 [hep-ph] .
- P. T. H. Pang et al., (2022), arXiv:2205.08513 [astro-ph.HE] .
- S. Huth et al., arXiv:2107.06229 (2021).
- B. D. Lackey and L. Wade, Phys.Rev. D91, 043002 (2015), arXiv:1410.8866 [gr-qc] .
- J. Buchner, “Pymultinest 2.9 documentation,” .
- T. Salmi et al., Astrophys. J. 941, 150 (2022), arXiv:2209.12840 [astro-ph.HE] .
- L. Struder et al., Astron. Astrophys. 365, L18 (2001).
- M. J. L. Turner et al., Astron. Astrophys. 365, L27 (2001), arXiv:astro-ph/0011498 .
- E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE] .
- T. L. S. Collaboration and the Virgo Collaboration, “Parameter estimation sample release for gwtc-1,” (2019).
- T. L. S. Collaboration and the Virgo Collaboration, “Parameter estimation sample release for gw190425,” (2020).
- M. Bulla, Mon. Not. Roy. Astron. Soc. 489, 5037 (2019), arXiv:1906.04205 [astro-ph.HE] .
- C. J. Krüger and F. Foucart, Phys. Rev. D 101, 103002 (2020), arXiv:2002.07728 [astro-ph.HE] .
- A. L. Kataev and V. S. Molokoedov, Phys. Rev. D 92, 054008 (2015).
- S. Vinciguerra et al., (2023), arXiv:2308.09469 [astro-ph.HE] .
- O. Komoltsev and A. Kurkela, Phys. Rev. Lett. 128, 202701 (2022), arXiv:2111.05350 [nucl-th] .
- P. Russotto et al., Phys. Rev. C 94, 034608 (2016), arXiv:1608.04332 [nucl-ex] .
- M. Punturo et al., Class. Quant. Grav. 27, 084007 (2010).
- S. Hild et al., Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
- D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.