Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness and Privacy in Voice Biometrics:A Study of Gender Influences Using wav2vec 2.0 (2308.14049v1)

Published 27 Aug 2023 in eess.AS and cs.SD

Abstract: This study investigates the impact of gender information on utility, privacy, and fairness in voice biometric systems, guided by the General Data Protection Regulation (GDPR) mandates, which underscore the need for minimizing the processing and storage of private and sensitive data, and ensuring fairness in automated decision-making systems. We adopt an approach that involves the fine-tuning of the wav2vec 2.0 model for speaker verification tasks, evaluating potential gender-related privacy vulnerabilities in the process. Gender influences during the fine-tuning process were employed to enhance fairness and privacy in order to emphasise or obscure gender information within the speakers' embeddings. Results from VoxCeleb datasets indicate our adversarial model increases privacy against uninformed attacks, yet slightly diminishes speaker verification performance compared to the non-adversarial model. However, the model's efficacy reduces against informed attacks. Analysis of system performance was conducted to identify potential gender biases, thus highlighting the need for further research to understand and improve the delicate interplay between utility, privacy, and equity in voice biometric systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.