Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating gender-ambiguous voices for privacy-preserving speech recognition (2207.01052v1)

Published 3 Jul 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Our voice encodes a uniquely identifiable pattern which can be used to infer private attributes, such as gender or identity, that an individual might wish not to reveal when using a speech recognition service. To prevent attribute inference attacks alongside speech recognition tasks, we present a generative adversarial network, GenGAN, that synthesises voices that conceal the gender or identity of a speaker. The proposed network includes a generator with a U-Net architecture that learns to fool a discriminator. We condition the generator only on gender information and use an adversarial loss between signal distortion and privacy preservation. We show that GenGAN improves the trade-off between privacy and utility compared to privacy-preserving representation learning methods that consider gender information as a sensitive attribute to protect.

Citations (12)

Summary

We haven't generated a summary for this paper yet.