Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Study on Hyperparameters Configurations for an Efficient Human Activity Recognition System (2308.13314v1)

Published 25 Aug 2023 in cs.HC

Abstract: Human Activity Recognition (HAR) has been a popular research field due to the widespread of devices with sensors and computational power (e.g., smartphones and smartwatches). Applications for HAR systems have been extensively researched in recent literature, mainly due to the benefits of improving quality of life in areas like health and fitness monitoring. However, since persons have different motion patterns when performing physical activities, a HAR system must adapt to user characteristics to maintain or improve accuracy. Mobile devices, such as smartphones, used to implement HAR systems, have limited resources (e.g., battery life). They also have difficulty adapting to the device's constraints to work efficiently for long periods. In this work, we present a kNN-based HAR system and an extensive study of the influence of hyperparameters (window size, overlap, distance function, and the value of k) and parameters (sampling frequency) on the system accuracy, energy consumption, and inference time. We also study how hyperparameter configurations affect the model's user and activity performance. Experimental results show that adapting the hyperparameters makes it possible to adjust the system's behavior to the user, the device, and the target service. These results motivate the development of a HAR system capable of automatically adapting the hyperparameters for the user, the device, and the service.

Citations (1)

Summary

We haven't generated a summary for this paper yet.