Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Generative Model-based Unfolding with Schrödinger Bridges (2308.12351v2)

Published 23 Aug 2023 in hep-ph, cs.LG, and hep-ex

Abstract: Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one based on generative models. The main advantage of discriminative models is that they learn a small correction to a starting simulation while generative models scale better to regions of phase space with little data. We propose to use Schroedinger Bridges and diffusion models to create SBUnfold, an unfolding approach that combines the strengths of both discriminative and generative models. The key feature of SBUnfold is that its generative model maps one set of events into another without having to go through a known probability density as is the case for normalizing flows and standard diffusion models. We show that SBUnfold achieves excellent performance compared to state of the art methods on a synthetic Z+jets dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. Glazov,   (2017), arXiv:1712.01814 [physics.data-an] .
  2. J. Chan and B. Nachman, Phys. Rev. D 108, 016002 (2023), arXiv:2302.05390 [hep-ph] .
  3. T. Alghamdi et al.,   (2023), arXiv:2307.04450 [hep-ph] .
  4. M. Arratia et al.,   (2021), arXiv:2109.13243 [hep-ph] .
  5. V. Andreev et al. (H1), Phys. Rev. Lett. 128, 132002 (2022), arXiv:2108.12376 [hep-ex] .
  6. H1 Collaboration, H1prelim-22-031  (2022).
  7. V. Andreev et al. (H1),  (2023), arXiv:2303.13620 [hep-ex] .
  8. H1 Collaboration, H1prelim-23-031  (2023).
  9.   (2022), arXiv:2208.11691 [hep-ex] .
  10. Y. Song (STAR),   (2023), arXiv:2307.07718 [nucl-ex] .
  11. L. B. Lucy, Astronomical Journal 79, 745 (1974).
  12. W. H. Richardson, J. Opt. Soc. Am. 62, 55 (1972).
  13. G. D’Agostini, Nucl. Instrum. Meth. A362, 487 (1995).
  14. D. J. Rezende and S. Mohamed,  Proceedings of Machine Learning Research, 37, 1530 (2016), arXiv:1505.05770 [stat.ML] .
  15. E. Schrödinger, Sitzungsberichte der Preuss Akad. Wissen. Phys. Math. Klasse Sonderausgabe 9, 144 (1931).
  16. A. Andreassen, P. Komiske, E. Metodiev, B. Nachman,  and J. Thaler, “Pythia/Herwig + Delphes Jet Datasets for OmniFold Unfolding,”  (2019).
  17. M. Bahr et al., Eur. Phys. J. C58, 639 (2008), arXiv:0803.0883 [hep-ph] .
  18. J. Bellm et al., Eur. Phys. J. C76, 196 (2016), arXiv:1512.01178 [hep-ph] .
  19. J. Bellm et al.,   (2017), arXiv:1705.06919 [hep-ph] .
  20. ATLAS Run 1 Pythia8 tunes, Tech. Rep. ATL-PHYS-PUB-2014-021 (CERN, Geneva, 2014).
  21. M. Cacciari and G. P. Salam, Phys. Lett. B641, 57 (2006), arXiv:hep-ph/0512210 [hep-ph] .
  22. J. Thaler and K. Van Tilburg, JHEP 03, 015 (2011), arXiv:1011.2268 [hep-ph] .
  23. J. Thaler and K. Van Tilburg, JHEP 02, 093 (2012), arXiv:1108.2701 [hep-ph] .
  24. “Fastjet contrib,” https://fastjet.hepforge.org/contrib/.
  25. F. Topsoe, IEEE Transactions on Information Theory 46, 1602 (2000).
  26. S. Bright-Thonney and B. Nachman, JHEP 03, 098 (2019), arXiv:1810.05653 [hep-ph] .
Citations (17)

Summary

We haven't generated a summary for this paper yet.