Improving Generative Model-based Unfolding with Schrödinger Bridges (2308.12351v2)
Abstract: Machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area: one based on discriminative models and one based on generative models. The main advantage of discriminative models is that they learn a small correction to a starting simulation while generative models scale better to regions of phase space with little data. We propose to use Schroedinger Bridges and diffusion models to create SBUnfold, an unfolding approach that combines the strengths of both discriminative and generative models. The key feature of SBUnfold is that its generative model maps one set of events into another without having to go through a known probability density as is the case for normalizing flows and standard diffusion models. We show that SBUnfold achieves excellent performance compared to state of the art methods on a synthetic Z+jets dataset.
- A. Glazov, (2017), arXiv:1712.01814 [physics.data-an] .
- J. Chan and B. Nachman, Phys. Rev. D 108, 016002 (2023), arXiv:2302.05390 [hep-ph] .
- T. Alghamdi et al., (2023), arXiv:2307.04450 [hep-ph] .
- M. Arratia et al., (2021), arXiv:2109.13243 [hep-ph] .
- V. Andreev et al. (H1), Phys. Rev. Lett. 128, 132002 (2022), arXiv:2108.12376 [hep-ex] .
- H1 Collaboration, H1prelim-22-031 (2022).
- V. Andreev et al. (H1), (2023), arXiv:2303.13620 [hep-ex] .
- H1 Collaboration, H1prelim-23-031 (2023).
- (2022), arXiv:2208.11691 [hep-ex] .
- Y. Song (STAR), (2023), arXiv:2307.07718 [nucl-ex] .
- L. B. Lucy, Astronomical Journal 79, 745 (1974).
- W. H. Richardson, J. Opt. Soc. Am. 62, 55 (1972).
- G. D’Agostini, Nucl. Instrum. Meth. A362, 487 (1995).
- D. J. Rezende and S. Mohamed, Proceedings of Machine Learning Research, 37, 1530 (2016), arXiv:1505.05770 [stat.ML] .
- E. Schrödinger, Sitzungsberichte der Preuss Akad. Wissen. Phys. Math. Klasse Sonderausgabe 9, 144 (1931).
- A. Andreassen, P. Komiske, E. Metodiev, B. Nachman, and J. Thaler, “Pythia/Herwig + Delphes Jet Datasets for OmniFold Unfolding,” (2019).
- M. Bahr et al., Eur. Phys. J. C58, 639 (2008), arXiv:0803.0883 [hep-ph] .
- J. Bellm et al., Eur. Phys. J. C76, 196 (2016), arXiv:1512.01178 [hep-ph] .
- J. Bellm et al., (2017), arXiv:1705.06919 [hep-ph] .
- ATLAS Run 1 Pythia8 tunes, Tech. Rep. ATL-PHYS-PUB-2014-021 (CERN, Geneva, 2014).
- M. Cacciari and G. P. Salam, Phys. Lett. B641, 57 (2006), arXiv:hep-ph/0512210 [hep-ph] .
- J. Thaler and K. Van Tilburg, JHEP 03, 015 (2011), arXiv:1011.2268 [hep-ph] .
- J. Thaler and K. Van Tilburg, JHEP 02, 093 (2012), arXiv:1108.2701 [hep-ph] .
- “Fastjet contrib,” https://fastjet.hepforge.org/contrib/.
- F. Topsoe, IEEE Transactions on Information Theory 46, 1602 (2000).
- S. Bright-Thonney and B. Nachman, JHEP 03, 098 (2019), arXiv:1810.05653 [hep-ph] .