Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Adversarial Attacks: The Similar Target Method (2308.10743v4)

Published 21 Aug 2023 in cs.CV and cs.CR

Abstract: Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns. An intriguing property of adversarial examples is their strong transferability. Several methods have been proposed to enhance transferability, including ensemble attacks which have demonstrated their efficacy. However, prior approaches simply average logits, probabilities, or losses for model ensembling, lacking a comprehensive analysis of how and why model ensembling significantly improves transferability. In this paper, we propose a similar targeted attack method named Similar Target~(ST). By promoting cosine similarity between the gradients of each model, our method regularizes the optimization direction to simultaneously attack all surrogate models. This strategy has been proven to enhance generalization ability. Experimental results on ImageNet validate the effectiveness of our approach in improving adversarial transferability. Our method outperforms state-of-the-art attackers on 18 discriminative classifiers and adversarially trained models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 ieee symposium on security and privacy (sp), 2017, pp. 39–57.
  2. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  3. Z. Wei, Y. Wang, Y. Guo, and Y. Wang, “Cfa: Class-wise calibrated fair adversarial training,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8193–8201.
  4. Z. Wei, X. Zhang, and M. Sun, “Extracting weighted finite automata from recurrent neural networks for natural languages,” in International Conference on Formal Engineering Methods.   Springer, 2022, pp. 370–385.
  5. Z. Wei, X. Zhang, Y. Zhang, and M. Sun, “Weighted automata extraction and explanation of recurrent neural networks for natural language tasks,” Journal of Logical and Algebraic Methods in Programming, vol. 136, p. 100907, 2024.
  6. Y. Zhang, Z. Wei, X. Zhang, and M. Sun, “Using z3 for formal modeling and verification of fnn global robustness,” arXiv preprint arXiv:2304.10558, 2023.
  7. H. Chen, Y. Dong, Z. Wang, X. Yang, C. Duan, H. Su, and J. Zhu, “Robust classification via a single diffusion model,” arXiv preprint arXiv:2305.15241, 2023.
  8. A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and transferable adversarial attacks on aligned language models,” arXiv preprint arXiv:2307.15043, 2023.
  9. Z. Wei, Y. Wang, and Y. Wang, “Jailbreak and guard aligned language models with only few in-context demonstrations,” arXiv preprint arXiv:2310.06387, 2023.
  10. Y. Dong, H. Chen, J. Chen, Z. Fang, X. Yang, Y. Zhang, Y. Tian, H. Su, and J. Zhu, “How robust is google’s bard to adversarial image attacks?” in R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large Foundation Models, 2023.
  11. J. Piet, M. Alrashed, C. Sitawarin, S. Chen, Z. Wei, E. Sun, B. Alomair, and D. Wagner, “Jatmo: Prompt injection defense by task-specific finetuning,” arXiv preprint arXiv:2312.17673, 2023.
  12. Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.
  13. Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with momentum,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9185–9193.
  14. Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial examples by translation-invariant attacks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4312–4321.
  15. C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille, “Improving transferability of adversarial examples with input diversity,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 2730–2739.
  16. X. Wang and K. He, “Enhancing the transferability of adversarial attacks through variance tuning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1924–1933.
  17. Y. Xiong, J. Lin, M. Zhang, J. E. Hopcroft, and K. He, “Stochastic variance reduced ensemble adversarial attack for boosting the adversarial transferability,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14 983–14 992.
  18. H. Chen, Y. Zhang, Y. Dong, and J. Zhu, “Rethinking model ensemble in transfer-based adversarial attacks,” arXiv preprint arXiv:2303.09105, 2023.
  19. J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft, “Nesterov accelerated gradient and scale invariance for adversarial attacks,” arXiv preprint arXiv:1908.06281, 2019.
  20. H. Chen, S. Shao, Z. Wang, Z. Shang, J. Chen, X. Ji, and X. Wu, “Bootstrap generalization ability from loss landscape perspective,” in European Conference on Computer Vision, 2022, pp. 500–517.
  21. H. Huang, Z. Chen, H. Chen, Y. Wang, and K. Zhang, “T-sea: Transfer-based self-ensemble attack on object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20 514–20 523.
  22. Z. Wei, J. Zhu, and Y. Zhang, “Sharpness-aware minimization alone can improve adversarial robustness,” in New Frontiers in Adversarial Machine Learning Workshop in International Conference on Machine Learning, 2023.
  23. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, pp. 84–90, 2017.
  24. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  25. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
  26. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.
  27. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  28. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
  29. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.
  30. N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient cnn architecture design,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 116–131.
  31. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324.
  32. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International Conference on Machine Learning, 2019, pp. 6105–6114.
  33. M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for mobile,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2820–2828.
  34. I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing network design spaces,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10 428–10 436.
  35. Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986.
  36. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, 2020.
  37. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10 012–10 022.
  38. Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li, “Maxvit: Multi-axis vision transformer,” in European Conference on Computer Vision, 2022, pp. 459–479.
  39. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” in International Conference on Learning Representations, 2016.
  40. F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in International Conference on Learning Representations, 2018.
  41. E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial training,” in International Conference on Learning Representations, 2020.
  42. L. Engstrom, A. Ilyas, H. Salman, S. Santurkar, and D. Tsipras, “Robustness (python library),” 2019. [Online]. Available: https://github.com/MadryLab/robustness
  43. H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry, “Do adversarially robust imagenet models transfer better?” in Advances in Neural Information Processing Systems, 2020, pp. 3533–3545.
  44. E. Debenedetti, V. Sehwag, and P. Mittal, “A light recipe to train robust vision transformers,” in 2023 IEEE Conference on Secure and Trustworthy Machine Learning, 2023, pp. 225–253.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  46. S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package of torch,” in Proceedings of the 18th ACM international conference on Multimedia, 2010, pp. 1485–1488.
  47. E. Debenedetti, V. Sehwag, and P. Mittal, “A light recipe to train robust vision transformers,” in 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 2023, pp. 225–253.
  48. F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chiang, P. Mittal, and M. Hein, “Robustbench: a standardized adversarial robustness benchmark,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
  49. J. Wang, “Adversarial examples in physical world.” in IJCAI, 2021, pp. 4925–4926.

Summary

We haven't generated a summary for this paper yet.