Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizable Decision Boundaries: Dualistic Meta-Learning for Open Set Domain Generalization (2308.09391v1)

Published 18 Aug 2023 in cs.CV

Abstract: Domain generalization (DG) is proposed to deal with the issue of domain shift, which occurs when statistical differences exist between source and target domains. However, most current methods do not account for a common realistic scenario where the source and target domains have different classes. To overcome this deficiency, open set domain generalization (OSDG) then emerges as a more practical setting to recognize unseen classes in unseen domains. An intuitive approach is to use multiple one-vs-all classifiers to define decision boundaries for each class and reject the outliers as unknown. However, the significant class imbalance between positive and negative samples often causes the boundaries biased towards positive ones, resulting in misclassification for known samples in the unseen target domain. In this paper, we propose a novel meta-learning-based framework called dualistic MEta-learning with joint DomaIn-Class matching (MEDIC), which considers gradient matching towards inter-domain and inter-class splits simultaneously to find a generalizable boundary balanced for all tasks. Experimental results demonstrate that MEDIC not only outperforms previous methods in open set scenarios, but also maintains competitive close set generalization ability at the same time. Our code is available at https://github.com/zzwdx/MEDIC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiran Wang (4 papers)
  2. Jian Zhang (543 papers)
  3. Lei Qi (84 papers)
  4. Yinghuan Shi (79 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.