Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Probing Spin-Induced Quadrupole Moments in Precessing Compact Binaries (2308.09032v2)

Published 17 Aug 2023 in gr-qc and astro-ph.HE

Abstract: Spin-induced quadrupole moments provide an important characterization of compact objects, such as black holes, neutron stars and black hole mimickers inspired by additional fields and/or modified theories of gravity. Black holes in general relativity have a specific spin-induced quadrupole moment, with other objects potentially having differing values. Different values of this quadrupole moment lead to modifications of the spin precession dynamics, and consequently modifications to the inspiral waveform. Based on the spin-dynamics and the associated precessing waveform developed in our previous work, we assess the prospects of measuring spin-induced moments in various black hole, neutron star, and black-hole mimicker binaries. We focus on binaries in which at least one of the objects is in the mass gap (similar to the $2.6 M_\odot$ object found in GW190814). We find that for generic precessing binaries, the effect of the spin-induced quadrupole moments on the precession is sensitive to the nature of the mass-gap object, i.e., whether it is a light black hole or a massive neutron star. So that this is a good probe of the nature of these objects. For precessing black-hole mimicker binaries, this waveform also provides significantly tighter constraints on their spin-induced quadrupole moments than the previous results obtained without incorporating the precession effects of spin-induced quadrupole moments. We apply the waveform to sample events in GWTC catalogs to obtain better constraints on the spin-induced quadrupole moments, and discuss the measurement prospects for events in the O$4$ run of the LIGO-Virgo-KAGRA Collaboration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. T. L. S. Collaboration and the Virgo Collaboration, Gwtc-2.1: Deep extended catalog of compact binary coalescences observed by ligo and virgo during the first half of the third observing run (2021), arXiv:2108.01045 [gr-qc] .
  2. T. L. S. Collaboration, the Virgo Collaboration, and the KAGRA Collaboration, Gwtc-3: Compact binary coalescences observed by ligo and virgo during the second part of the third observing run (2021a), arXiv:2111.03606 [gr-qc] .
  3. Z. Pan, Z. Lyu, and H. Yang, Phys. Rev. D 105, 083005 (2022), arXiv:2112.10237 [astro-ph.HE] .
  4. Z. Pan and H. Yang, Phys. Rev. D 103, 103018 (2021a), arXiv:2101.09146 [astro-ph.HE] .
  5. Z. Pan, Z. Lyu, and H. Yang, Phys. Rev. D 104, 063007 (2021), arXiv:2104.01208 [astro-ph.HE] .
  6. S. de Wet et al., Astron. Astrophys. 649, A72 (2021), arXiv:2103.02399 [astro-ph.HE] .
  7. K. D. Alexander et al., Astrophys. J. 923, 66 (2021), arXiv:2102.08957 [astro-ph.HE] .
  8. C. D. Kilpatrick et al. (Gravity Collective), Astrophys. J. 923, 258 (2021), arXiv:2106.06897 [astro-ph.HE] .
  9. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017b), arXiv:1710.05832 [gr-qc] .
  10. P. K. Gupta, J. Steinhoff, and T. Hinderer, arXiv preprint arXiv:2302.11274  (2023).
  11. K. Yagi and N. Yunes, Phys. Rev. D 88, 023009 (2013).
  12. E. Poisson, Phys. Rev. D 57, 5287 (1998).
  13. N. V. Krishnendu, K. G. Arun, and C. K. Mishra, Phys. Rev. Lett. 119, 091101 (2017).
  14. T. Narikawa, N. Uchikata, and T. Tanaka, Physical Review D 104, 10.1103/physrevd.104.084056 (2021).
  15. C. A. Herdeiro and E. Radu, Physical Review Letters 112, 10.1103/physrevlett.112.221101 (2014).
  16. D. Baumann, H. S. Chia, and R. A. Porto, Physical Review D 99, 10.1103/physrevd.99.044001 (2019).
  17. H. S. Chia and T. D. Edwards, Journal of Cosmology and Astroparticle Physics 2020 (11), 033.
  18. B. Giacomazzo, L. Rezzolla, and N. Stergioulas, Phys. Rev. D 84, 024022 (2011).
  19. P. Iosif and N. Stergioulas, Monthly Notices of the Royal Astronomical Society 510, 2948 (2021), https://academic.oup.com/mnras/article-pdf/510/2/2948/42098358/stab3565.pdf .
  20. K.-W. Lo and L.-M. Lin, The Astrophysical Journal 728, 12 (2011).
  21. Z. Pan and H. Yang, Astrophys. J. 923, 173 (2021b), arXiv:2108.00267 [astro-ph.HE] .
  22. N. Sarin and P. D. Lasky, Gen. Rel. Grav. 53, 59 (2021), arXiv:2012.08172 [astro-ph.HE] .
  23. F. D. Ryan, Phys. Rev. D 55, 6081 (1997).
  24. S. L. Liebling and C. Palenzuela, Living Reviews in Relativity 20, 10.1007/s41114-017-0007-y (2017).
  25. P. O. Mazur and E. Mottola, Proceedings of the National Academy of Sciences 101, 9545 (2004), https://www.pnas.org/doi/pdf/10.1073/pnas.0402717101 .
  26. P. O. Mazur and E. Mottola, Universe 9, 88 (2023).
  27. H. Yang, B. Bonga, and Z. Pan, Phys. Rev. Lett. 130, 011402 (2023), arXiv:2207.13754 [gr-qc] .
  28. U. Danielsson, G. Dibitetto, and S. Giri, Journal of High Energy Physics 2017, 10.1007/jhep10(2017)171 (2017).
  29. U. Danielsson, L. Lehner, and F. Pretorius, Phys. Rev. D 104, 124011 (2021), arXiv:2109.09814 [gr-qc] .
  30. A. Klein, Efpe: Efficient fully precessing eccentric gravitational waveforms for binaries with long inspirals (2021), arXiv:2106.10291 [gr-qc] .
  31. LIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL) (2018).
  32. H. Tagoshi, S. Mano, and E. Takasugi, Progress of Theoretical Physics 98, 829 (1997), https://academic.oup.com/ptp/article-pdf/98/4/829/5382234/98-4-829.pdf .
  33. K. Alvi, Phys. Rev. D 64, 104020 (2001a).
  34. S. Datta, K. S. Phukon, and S. Bose, Physical Review D 104, 10.1103/physrevd.104.084006 (2021).
  35. H. Tan, J. Noronha-Hostler, and N. Yunes, Phys. Rev. Lett. 125, 261104 (2020).
  36. L. S. Finn, Phys. Rev. D 46, 5236 (1992).
  37. K. Alvi, Phys. Rev. D 64, 104020 (2001b).
  38. E. Thrane and C. Talbot, Publications of the Astronomical Society of Australia 36, 10.1017/pasa.2019.2 (2019).
  39. LIGO and Virgo O4 sensitivity curves. We have adopted high sensitivity curves in O4 simulations (aligo_O4high.txt and avirgo_O4high_NEW.txt), https://dcc.ligo.org/LIGO-T2200043/public.
  40. A##{}^{\#}start_FLOATSUPERSCRIPT # end_FLOATSUPERSCRIPT sensitivity curve, https://dcc.ligo.org/LIGO-T2300041/public.
  41. Cosmic explorer sensitivity curves, https://dcc.ligo.org/LIGO-P1600143/public.
  42. S. Hild, S. Chelkowski, and A. Freise, Pushing towards the et sensitivity using ’conventional’ technology (2008), arXiv:0810.0604 [gr-qc] .
  43. V. Cardoso and P. Pani, Living Reviews in Relativity 22, 10.1007/s41114-019-0020-4 (2019).
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com