Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Detection and Analysis of Nanoparticles in Scanning Electron Microscopy Images (2308.08732v1)

Published 17 Aug 2023 in eess.IV, cond-mat.mtrl-sci, and cs.CV

Abstract: In this study, we present a computational framework tailored for the precise detection and comprehensive analysis of nanoparticles within scanning electron microscopy (SEM) images. The primary objective of this framework revolves around the accurate localization of nanoparticle coordinates, accompanied by secondary objectives encompassing the extraction of pertinent morphological attributes including area, orientation, brightness, and length. Constructed leveraging the robust image processing capabilities of Python, particularly harnessing libraries such as OpenCV, SciPy, and Scikit-Image, the framework employs an amalgamation of techniques, including thresholding, dilating, and eroding, to enhance the fidelity of image processing outcomes. The ensuing nanoparticle data is seamlessly integrated into the RStudio environment to facilitate meticulous post-processing analysis. This encompasses a comprehensive evaluation of model accuracy, discernment of feature distribution patterns, and the identification of intricate particle arrangements. The finalized framework exhibits high nanoparticle identification within the primary sample image and boasts 97\% accuracy in detecting particles across five distinct test images drawn from a SEM nanoparticle dataset. Furthermore, the framework demonstrates the capability to discern nanoparticles of faint intensity, eluding manual labeling within the control group.

Summary

We haven't generated a summary for this paper yet.