Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Superimposed Divide-and-Conquer Image Recognition Method for SEM Images of Nanoparticles on The Surface of Monocrystalline silicon with High Aggregation Degree (2206.01884v1)

Published 4 Jun 2022 in cs.CV and cs.AI

Abstract: The nanoparticle size and distribution information in the SEM images of silicon crystals are generally counted by manual methods. The realization of automatic machine recognition is significant in materials science. This paper proposed a superposition partitioning image recognition method to realize automatic recognition and information statistics of silicon crystal nanoparticle SEM images. Especially for the complex and highly aggregated characteristics of silicon crystal particle size, an accurate recognition step and contour statistics method based on morphological processing are given. This method has technical reference value for the recognition of Monocrystalline silicon surface nanoparticle images under different SEM shooting conditions. Besides, it outperforms other methods in terms of recognition accuracy and algorithm efficiency.

Summary

We haven't generated a summary for this paper yet.