Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Quasinormal modes of dark matter core-black hole spacetime (2308.06532v2)

Published 12 Aug 2023 in gr-qc

Abstract: In the galactic core, when the scale of dark matter is small, the distribution of dark matter is that of a constant density dark matter core.Considering the case of a supermassive black hole coupled to a constant density dark matter core, we study the quasinormal modes of the black hole in the constant density dark matter core black hole system and calculate the quasinormal modes frequency of the black hole using the third order WKB approximation and the prony method.In addition, we study the effect of the constant density dark matter core parameter $r_0$ on the quasinormal modes of black holes in the vicinity of black holes.As the angular quantum number increases, the ringdown process becomes closer and closer to the case of the ringdown process of a schwarzschild black hole.The presence of a constant density dark matter core affects the quasinormal modes of the black hole, with relative deviations on the order of $10{-15}-10{-13}$ with respect to the detector.These features suggest that with future improvements in detector accuracy, we can use them for the detection of gravitational waves in the spacetime of constant density dark matter core-black hole systems, which in turn opens up the possibility of understanding the behavior of dark matter in the vicinity of black holes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. F. Zwicky. On the Large Scale Distribution of Matter in the Universe. Phys. Rev., 61:489–503, 1942.
  2. Vera C Rubin and Jr. Ford, W Kent. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. apj, 159:379, 1970.
  3. G.F.and Bennett Smoot. Structure in the COBE Differential Microwave Radiometer First-Year Maps. apjl, 396:L1, sep 1992.
  4. A. L. Melott. cluster analysis of the nonlinear evolution of large scale structure in an axion/gravitino/photino dominated universe. Phys.Rev.Lett., 51:935–938, 1983.
  5. Small-Scale Challenges to the ΛΛ\Lambdaroman_ΛCDM Paradigm. Ann. Rev. Astron. Astrophys., 55:343–387, 2017.
  6. The Structure of cold dark matter halos. Astrophys.J., 462:563–575, 1996.
  7. de Blok, W.J.G.and Bosma,A. High-resolution rotation curves of low surface brightness galaxies. aap, 385:816–846, apr 2002.
  8. Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure. Mon. Not. Roy. Astron. Soc., 430:81–104, 2013.
  9. Halo formation in warm dark matter models. Astrophys. J., 556:93–107, 2001.
  10. Cores in warm dark matter haloes: a Catch 22 problem. Mon. Not. Roy. Astron. Soc., 424:1105–1112, 2012.
  11. The possible equation of state of dark matter in low surface brightness galaxies. Chin. Phys. C, 45(10):105103, 2021.
  12. Stability of a Schwarzschild singularity. Phys. Rev., 108:1063–1069, 1957.
  13. Frank J. Zerilli. Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett., 24:737–738, 1970.
  14. C. V. Vishveshwara. Scattering of Gravitational Radiation by a Schwarzschild Black-hole. Nature, 227:936–938, 1970.
  15. Stability and quasinormal modes of the massive scalar field around Kerr black holes. Phys. Rev. D, 73:124040, 2006.
  16. A. Lopez-Ortega. Electromagnetic quasinormal modes of D-dimensional black holes. General Relativity and Gravitation, 38(12):1747–1770, 2006.
  17. Jing. Liu. Electromagnetic perturbations of black holes in Gauss-Bonnet gravity. Commun. Theor. Phys., 47:647–652, 2007.
  18. Cho,H T. Dirac quasinormal modes in Schwarzschild black hole space-times. Phys. Rev. D, 68:024003, 2003.
  19. Jiliang Jing. Dirac quasinormal modes of the reissner-nordström de sitter black hole. Physical Review D, 69(8), 2004.
  20. Giammatteo M. and Jing, J L. Dirac quasinormal frequencies in Schwarzschild-AdS space-time. Phys. Rev. D, 71:024007, 2005.
  21. Wu Y J and Zhao Z. Dirac quasinormal modes in Reissner-Nordström spacetimes. Phys.Rev.D, 69:084015, 2004.
  22. Quasinormal modes of black holes and black branes. Class.Quant.Grav., 26:163001, 2009.
  23. Scalar perturbations of nonsingular nonrotating black holes in conformal gravity. Phys. Rev. D, 96:064028, 2017.
  24. Gravitational waves from quasinormal modes of a class of Lorentzian wormholes. Phys. Rev. D, 97(12):124004, 2018.
  25. Quasinormal Modes of Black holes in f⁢(Q)𝑓𝑄f(Q)italic_f ( italic_Q ) gravity. 3 2023.
  26. M.S. Churilova and Z. Stuchlik. Ringing of the regular black-hole/wormhole transition. Class. Quant. Grav., 37(7):075014, 2020.
  27. Greybody radiation and quasinormal modes of Kerr-like black hole in Bumblebee gravity model. Eur. Phys. J. C, 81(6):501, 2021.
  28. Shadows and quasinormal modes of the Bardeen black hole in cloud of strings. Eur. Phys. J. Plus, 138(6):536, 2023.
  29. G. Abbas and R. H. Ali. Thermal fluctuations, quasi-normal modes and phase transition of the charged AdS black hole with perfect fluid dark matter. Eur. Phys. J. C, 83(5):407, 2023.
  30. F.J. Zerilli. Perturbation analysis for gravitational and electromagnetic radiation in a reissner-nordstroem geometry. Phys. Rev. D, 9(4):860–868, 1974.
  31. Teukolsky, S. A. Rotating black holes-separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett., 29(16):1114–1118, 1972.
  32. Quasinormal modes of Schwarzschild–anti–deSitter black holes: Electromagnetic and gravitational perturbations. Phys. Rev. D, 64:084017, 2001.
  33. Ringing of a black hole in a dark matter halo. Phys. Rev. D, 104(10):104042, 2021.
  34. Gravitational ringing and superradiant instabilities of the Kerr-like black holes in a dark matter halo. Eur. Phys. J. C, 83(7):565, 2023.
  35. Echoes of novel black-bounce spacetimes. Phys. Rev. D, 104(10):104021, 2021.
  36. Ringing and echoes from black bounces surrounded by the string cloud. Eur. Phys. J. C, 83(3):217, 2023.
  37. Spacetime Metrics and Ringdown Waveforms for Galactic Black Holes Surrounded by a Dark Matter Spike. Astrophys. J., 940(1):33, 2022.
  38. Axial gravitational ringing of a spherically symmetric black hole surrounded by dark matter spike. Phys. Rev. D, 108(2):024070, 2023.
  39. Black holes in galaxies: Environmental impact on gravitational-wave generation and propagation. Phys. Rev. D, 105(6):L061501, 2022.
  40. Black holes surrounded by generic dark matter profiles: Appearance and gravitational-wave emission. Phys. Rev. D, 107(10):104033, 2023.
  41. R. A. Konoplya and A. Zhidenko. Solutions of the Einstein Equations for a Black Hole Surrounded by a Galactic Halo. Astrophys. J., 933(2):166, 2022.
  42. Kimet Jusufi. Black holes surrounded by Einstein clusters as models of dark matter fluid. Eur. Phys. J. C, 83(2):103, 2023.
  43. High-resolution optical velocity fields of 11 low surface brightness galaxies. The Astrophysical Journal Supplement Series, 165(2):461, aug 2006.
  44. The case against warm or self-interacting dark matter as explanations for cores in low surface brightness galaxies. The Astrophysical Journal Letters, 710(2):L161, feb 2010.
  45. Investigating AGN black hole masses and the MB⁢Hsubscript𝑀𝐵𝐻M_{BH}italic_M start_POSTSUBSCRIPT italic_B italic_H end_POSTSUBSCRIPT-relation for low surface brightness galaxies. mnras, 455(3):3148–3168, January 2016.
  46. Gravitational axial perturbations of Schwarzschild-like black holes in dark matter halos. Phys. Rev. D, 104(12):124082, 2021.
  47. Gregor Wentzel. Eine Verallgemeinerung der Quantenbedingungen fürdie Zweckeder Wellenmechanik. Z. Phys., 38(6):518–529, 1926.
  48. Black hole normal modes-A semianalytic approach. apjl, 291:L33–L36, apr 1985.
  49. Iyer,S.and C.M.Will. Black-hole normal modes: A WKB approach. II. Schwarzschild black holes. Phys. Rev. D, 35:3632–3636, 1987.
  50. R. A. Konoplya. Quasinormal behavior of the D𝐷Ditalic_D-dimensional Schwarzschild black hole and the higher order WKB approach. Phys. Rev. D, 68:024018, 2003.
  51. J. Matyjasek and M. Opala. Quasinormal modes of black holes: The improved semianalytic approach. Phys. Rev. D, 96:024011, 2017.
  52. Yasuyuki Hatsuda. Quasinormal modes of black holes and Borel summation. Phys. Rev. D, 101(2):024008, 2020.
  53. Pullin Gundlach, Price. Late-time behavior of stellar collapse and explosions. ii. nonlinear evolution. Phys. Rev. D, 49:890–899, Jan 1994.
  54. Evolution of a self-interacting scalar field in the spacetime of a higher dimensional black hole. Phys. Rev. D, 72:044027, 2005.
  55. Mining information from binary black hole mergers: A Comparison of estimation methods for complex exponentials in noise. Phys. Rev. D, 75:124017, 2007.
  56. On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D, 73:064030, 2006.
  57. Imprints of dark matter on gravitational ringing of supermassive black holes. Phys. Dark Univ., 37:101078, 2022.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com