Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Machine Learning and Transformer-based Approaches for Deceptive Text Classification: A Comparative Analysis (2308.05476v2)

Published 10 Aug 2023 in cs.CL and cs.LG

Abstract: Deceptive text classification is a critical task in natural language processing that aims to identify deceptive o fraudulent content. This study presents a comparative analysis of machine learning and transformer-based approaches for deceptive text classification. We investigate the effectiveness of traditional machine learning algorithms and state-of-the-art transformer models, such as BERT, XLNET, DistilBERT, and RoBERTa, in detecting deceptive text. A labeled dataset consisting of deceptive and non-deceptive texts is used for training and evaluation purposes. Through extensive experimentation, we compare the performance metrics, including accuracy, precision, recall, and F1 score, of the different approaches. The results of this study shed light on the strengths and limitations of machine learning and transformer-based methods for deceptive text classification, enabling researchers and practitioners to make informed decisions when dealing with deceptive content.

Summary

We haven't generated a summary for this paper yet.