Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Mafiascum Dataset: A Large Text Corpus for Deception Detection (1811.07851v3)

Published 19 Nov 2018 in cs.CL

Abstract: Detecting deception in natural language has a wide variety of applications, but because of its hidden nature there are currently no public, large-scale sources of labeled deceptive text. This work introduces the Mafiascum dataset [1], a collection of over 700 games of Mafia, in which players are randomly assigned either deceptive or non-deceptive roles and then interact via forum postings. Over 9000 documents were compiled from the dataset, which each contained all messages written by a single player in a single game. This corpus was used to construct a set of hand-picked linguistic features based on prior deception research, as well as a set of average word vectors enriched with subword information. A logistic regression classifier fit on a combination of these feature sets achieved an average precision of 0.39 (chance = 0.26) and an AUROC of 0.68 on 5000+ word documents. On 50+ word documents, an average precision of 0.29 (chance = 0.23) and an AUROC of 0.59 was achieved. [1] https://bitbucket.org/bopjesvla/thesis/src

Citations (14)

Summary

We haven't generated a summary for this paper yet.