Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum many-body thermal machines enabled by atom-atom correlations (2308.05266v5)

Published 10 Aug 2023 in cond-mat.quant-gas, cond-mat.stat-mech, and quant-ph

Abstract: Particle-particle correlations, characterized by Glauber's second-order correlation function,play an important role in the understanding of various phenomena in radio and optical astronomy, quantum and atom optics, particle physics, condensed matter physics, and quantum many-body theory. However, the relevance of such correlations to quantum thermodynamics has so far remained illusive. Here, we propose and investigate a class of quantum many-body thermal machines whose operation is directly enabled by second-order atom-atom correlations in an ultracold atomic gas. More specifically, we study quantum thermal machines that operate in a sudden interaction-quench Otto cycle and utilize a one-dimensional Lieb-Liniger gas of repulsively interacting bosons as the working fluid. The atom-atom correlations in such a gas are different to those of a classical ideal gas, and are a result of the interplay between interparticle interactions, quantum statistics, and thermal fluctuations. We show that operating these thermal machines in the intended regimes, such as a heat engine, refrigerator, thermal accelerator, or heater, would be impossible without such atom-atom correlations. Our results constitute a step forward in the design of conceptually new quantum thermodynamic devices which take advantage of uniquely quantum resources such as quantum coherence, correlations, and entanglement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary Physics 57, 545 (2016).
  2. R. Kosloff and A. Levy, Quantum Heat Engines and Refrigerators: Continuous Devices, Annual Review of Physical Chemistry 65, 365 (2014).
  3. F. G. Brandao and M. B. Plenio, Entanglement theory and the second law of thermodynamics, Nature Physics 4, 873 (2008).
  4. K. Funo, Y. Watanabe, and M. Ueda, Thermodynamic work gain from entanglement, Phys. Rev. A 88, 052319 (2013).
  5. V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nature communications 6, 7689 (2015).
  6. J. Jaramillo, M. Beau, and A. del Campo, Quantum supremacy of many-particle thermal machines, New Journal of Physics 18, 075019 (2016).
  7. M. Beau, J. Jaramillo, and A. Del Campo, Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity, Entropy 18, 10.3390/e18050168 (2016).
  8. T. Kinoshita, T. Wenger, and D. S. Weiss, Local Pair Correlations in One-Dimensional Bose Gases, Phys. Rev. Lett. 95, 190406 (2005).
  9. E. H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys. Rev. 130, 1605 (1963).
  10. C. N. Yang and C. P. Yang, Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction, Journal of Mathematical Physics 10, 1115 (1969).
  11. M. Girardeau, Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension, Journal of Mathematical Physics 1, 516 (1960).
  12. T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a One-Dimensional Tonks-Girardeau Gas, Science 305, 1125 (2004).
  13. M. Olshanii, Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons, Phys. Rev. Lett. 81, 938 (1998).
  14. H. B. Callen, Thermodynamics and an introduction to thermostatistics, 2nd ed. (John Wiley & Sons, Hoboken, New Jersey, 1985).
  15. C. J. Pethick and H. Smith, Bose–Einstein condensation in dilute gases (Cambridge university press, Cambridge, United Kingdom, 2008).
  16. D. V. Schroeder, An introduction to thermal physics (Oxford University Press, Oxford, 2020).
  17. R. Kosloff, A quantum mechanical open system as a model of a heat engine, The Journal of Chemical Physics 80, 1625 (1984).
  18. R. Kosloff and Y. Rezek, The Quantum Harmonic Otto Cycle, Entropy 19, 10.3390/e19040136 (2017).
  19. Y. Zheng and D. Poletti, Work and efficiency of quantum Otto cycles in power-law trapping potentials, Phys. Rev. E 90, 012145 (2014).
  20. O. Abah and E. Lutz, Energy efficient quantum machines, Europhysics Letters 118, 40005 (2017).
  21. C. Mora and Y. Castin, Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A 67, 053615 (2003).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.