Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Diabetic Retinopathy Grading using Deep Convolutional Neural Network (2004.06334v1)

Published 14 Apr 2020 in eess.IV and cs.CV

Abstract: Diabetic Retinopathy is a global health problem, influences 100 million individuals worldwide, and in the next few decades, these incidences are expected to reach epidemic proportions. Diabetic Retinopathy is a subtle eye disease that can cause sudden, irreversible vision loss. The early-stage Diabetic Retinopathy diagnosis can be challenging for human experts, considering the visual complexity of fundus photography retinal images. However, Early Stage detection of Diabetic Retinopathy can significantly alter the severe vision loss problem. The competence of computer-aided detection systems to accurately detect the Diabetic Retinopathy had popularized them among researchers. In this study, we have utilized a pre-trained DenseNet121 network with several modifications and trained on APTOS 2019 dataset. The proposed method outperformed other state-of-the-art networks in early-stage detection and achieved 96.51% accuracy in severity grading of Diabetic Retinopathy for multi-label classification and achieved 94.44% accuracy for single-class classification method. Moreover, the precision, recall, f1-score, and quadratic weighted kappa for our network was reported as 86%, 87%, 86%, and 91.96%, respectively. Our proposed architecture is simultaneously very simple, accurate, and efficient concerning computational time and space.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Saket S. Chaturvedi (5 papers)
  2. Kajol Gupta (4 papers)
  3. Vaishali Ninawe (2 papers)
  4. Prakash S. Prasad (3 papers)
Citations (20)