Molecular docking via quantum approximate optimization algorithm (2308.04098v2)
Abstract: Molecular docking plays a pivotal role in drug discovery and precision medicine, enabling us to understand protein functions and advance novel therapeutics. Here, we introduce a potential alternative solution to this problem, the digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA), which utilizes counterdiabatic driving and QAOA on a quantum computer. Our method was applied to analyze diverse biological systems, including the SARS-CoV-2 Mpro complex with PM-2-020B, the DPP-4 complex with piperidine fused imidazopyridine 34, and the HIV-1 gp120 complex with JP-III-048. The DC-QAOA exhibits superior performance, providing more accurate and biologically relevant docking results, especially for larger molecular docking problems. Moreover, QAOA-based algorithms demonstrate enhanced hardware compatibility in the noisy intermediate-scale quantum era, indicating their potential for efficient implementation under practical docking scenarios. Our findings underscore quantum computing's potential in drug discovery and offer valuable insights for optimizing protein-ligand docking processes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.