Phase Crossover induced by Dynamical Many Body Localization in Periodically Driven Long-Range Spin Systems (2308.03622v2)
Abstract: Dynamical many-body freezing occurs in periodic transverse field-driven integrable quantum spin systems. Under freezing conditions, quantum dynamics causes practically infinite hysteresis in the drive response, maintaining its starting value. We find similar resonant freezing in the Lipkin-Meshkov-Glick (LMG) model. In the LMG, the freezing conditions in the driving field suppresses the heating postulated by the eigenstate thermalization hypothesis (ETH) by inducing dynamical many-body localization, or DMBL. This is in contrast to Many Body Localization (MBL), which requires disorder to suppress ETH. DMBL has been validated by the inverse participation ratio (IPR) of the quasistationary Floquet modes. Similarly to the TFIM, the LMG exhibits high-frequency localization only at freezing points. IPR localization in the LMG deteriorates with an inverse system size law at lower frequencies, which indicates heating to infinite temperature. Furthermore, adiabatically increasing frequency and amplitude from low values raises the Floquet state IPR in the LMG from nearly zero to unity, indicating a phase crossover. This occurrence enables a future technique to construct an MBL engine in clean systems that can be cycled by adjusting drive parameters only.
- S. Sahoo, I. Schneider, and S. Eggert, (2019), arXiv:1906.00004 [cond-mat.str-el] .
- A. Das, Phys. Rev. B 82, 172402 (2010).
- S. Bhattacharyya, A. Das, and S. Dasgupta, Phys. Rev. B 86, 054410 (2012).
- A. Haldar, R. Moessner, and A. Das, Phys. Rev. B 97, 245122 (2018).
- G. B. Mbeng, A. Russomanno, and G. E. Santoro, (2020), arXiv:2009.09208 [quant-ph] .
- H. S. Yamada and K. S. Ikeda, Phys. Rev. E 105, 054201 (2022).
- A. Roy and A. Das, Phys. Rev. B 91, 121106(R) (2015).
- H. Li, B. Shapiro, and T. Kottos, Phys. Rev. B 98, 121101(R) (2018).
- A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039 (2015).
- L. Zhang, V. Khemani, and D. A. Huse, Phys. Rev. B 94, 224202 (2016).
- H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).
- K. Mizuta, K. Takasan, and N. Kawakami, Phys. Rev. Res. 2, 033284 (2020).
- T. Mori, Annual Review of Condensed Matter Physics 14, 35 (2023).
- S. Aditya and D. Sen, SciPost Phys. Core 6, 083 (2023).
- M. Schiulaz, A. Silva, and M. Müller, Phys. Rev. B 91, 184202 (2015).
- T. Grover and M. P. A. Fisher, J. Stat. Mech. Theory Exp. 2014, P10010 (2014).
- Z. Papić, E. M. Stoudenmire, and D. A. Abanin, Ann. Physics 362, 714 (2015).
- O. Hart, S. Gopalakrishnan, and C. Castelnovo, Phys. Rev. Lett. 126, 227202 (2021).
- H. Lipkin, N. Meshkov, and A. Glick, Nuclear Phys. B 62, 188 (1965).
- N. Meshkov, A. Glick, and H. Lipkin, Nuclear Phys. B 62, 199 (1965).
- A. Glick, H. Lipkin, and N. Meshkov, Nuclear Phys. B 62, 211 (1965).
- N. Debergh and F. Stancu, J. Phys. A: Math. Gen. 34, 3265 (2001).
- P. Ribeiro, J. Vidal, and R. Mosseri, Phys. Rev. E 78, 021106 (2008).
- P. Titum and M. F. Maghrebi, Phys. Rev. Lett. 125, 040602 (2020).
- A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57 (2009).
- T. Eisele and R. S. Ellis, J. Stat. Phys. 52, 161 (1988).
- A. Canning, Phys. A 185, 254 (1992).
- A. Russomanno, R. Fazio, and G. E. Santoro, Europhys. Lett. 110, 37005 (2015).
- G. Misguich, V. Pasquier, and J.-M. Luck, Phys. Rev. B 94, 155110 (2016).
- M. Calixto and E. Romera, J. Stat. Mech. Theory Exp. 2015, P06029 (2015).
- K. Fujii, Journal of Modern Physics 8, 2042 (2017).
- B. Sutherland, Beautiful Models (WORLD SCIENTIFIC, 2004) Chap. 2.
- M. Srednicki, Phys. Rev. E 50, 888 (1994).
- M. Srednicki, J. Phys. A: Math. Gen. 32, 1163 (1999).
- M. Holthaus, J. Phys. B: At. Mol. Opt. Phys. 49, 013001 (2015).
- M. Vogl, M. Rodriguez-Vega, and G. A. Fiete, Phys. Rev. B 101, 024303 (2020).
- M. Bukov, L. D'Alessio, and A. Polkovnikov, Adv Phys 64, 139 (2015).
- L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
- R. Yousefjani, S. Bose, and A. Bayat, Phys. Rev. Res. 5, 013094 (2023).
- F. Alet and N. Laflorencie, C. R. Phys. 19, 498 (2018).
- S. J. Garratt and S. Roy, Phys. Rev. B 106, 054309 (2022).
- R. B. Stinchcombe, J. Phys. C: Solid State Phys. 6, 2459 (1973).
- F. E. H. George Arfken, Hans Weber, Mathematical Methods for Physicists, 7th ed. (Academic Press, 2011).
- J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun. 184, 1234 (2013).
- M. Rahaman, A. Sakurai, and A. Roy, Time crystal embodies chimera in periodically driven quantum spin system (2024), arXiv:2309.16523 [cond-mat.stat-mech] .
- N. C. Murphy, R. Wortis, and W. A. Atkinson, Phys. Rev. B 83, 184206 (2011).
- N. Trivedi and D. Heidarian, Prog Theor Phys Supp 160, 296 (2005).
- T. Mori, J. Phys. A: Math. Theor. 52, 054001 (2019).
- B. Sciolla and G. Biroli, Phys. Rev. Lett. 105, 220401 (2010).
- R. A. Kidd, M. K. Olsen, and J. F. Corney, Phys. Rev. A 100, 013625 (2019).
- A. Bäcker, S. Fürstberger, and R. Schubert, Phys. Rev. E 70, 036204 (2004).
- S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.