Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Make Explicit Calibration Implicit: Calibrate Denoiser Instead of the Noise Model (2308.03448v2)

Published 7 Aug 2023 in cs.CV and eess.IV

Abstract: Explicit calibration-based methods have dominated RAW image denoising under extremely low-light environments. However, these methods are impeded by several critical limitations: a) the explicit calibration process is both labor- and time-intensive, b) challenge exists in transferring denoisers across different camera models, and c) the disparity between synthetic and real noise is exacerbated by digital gain. To address these issues, we introduce a groundbreaking pipeline named Lighting Every Darkness (LED), which is effective regardless of the digital gain or the camera sensor. LED eliminates the need for explicit noise model calibration, instead utilizing an implicit fine-tuning process that allows quick deployment and requires minimal data. Structural modifications are also included to reduce the discrepancy between synthetic and real noise without extra computational demands. Our method surpasses existing methods in various camera models, including new ones not in public datasets, with just a few pairs per digital gain and only 0.5% of the typical iterations. Furthermore, LED also allows researchers to focus more on deep learning advancements while still utilizing sensor engineering benefits. Code and related materials can be found in https://srameo.github.io/projects/led-iccv23/ .

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com