Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of motion blur kernel parameters using regression convolutional neural networks (2308.01381v3)

Published 2 Aug 2023 in eess.IV

Abstract: Many deblurring and blur kernel estimation methods use a maximum a posteriori (MAP) approach or deep learning-based classification techniques to sharpen an image and/or predict the blur kernel. We propose a regression approach using convolutional neural networks (CNNs) to predict parameters of linear motion blur kernels, the length and orientation of the blur. We analyze the relationship between length and angle of linear motion blur that can be represented as digital filter kernels. A large dataset of blurred images is generated using a suite of blur kernels and used to train a regression CNN for prediction of length and angle of the motion blur. The coefficients of determination for estimation of length and angle are found to be greater than or equal to 0.89, even under the presence of significant additive Gaussian noise, up to a variance of 10\% (SNR of 10 dB). Using our estimated kernel in a non-blind image deblurring method, the sum of squared differences error ratio demonstrates higher cumulative histogram values than comparison methods, with most test images yielding an error ratio of less than or equal to 1.25.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” in ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, (New York, NY, USA), p. 787–794, Association for Computing Machinery, 2006.
  2. S. Dai and Y. Wu, “Motion from blur,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2008.
  3. B. R. Hunt, A. L. Iler, C. A. Bailey, and M. A. Rucci, “Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations,” Optical Engineering, vol. 57, no. 2, p. 024101, 2018.
  4. É. Thiébaut, L. Dénis, F. Soulez, and R. Mourya, “Spatially variant PSF modeling and image deblurring,” in Adaptive Optics Systems V, vol. 9909, pp. 2211–2220, SPIE, 2016.
  5. Y. Bahat, N. Efrat, and M. Irani, “Non-uniform blind deblurring by reblurring,” in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3306–3314, 2017.
  6. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  7. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971, IEEE, 2009.
  8. L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for natural image deblurring,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2013.
  9. D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in CVPR 2011, pp. 233–240, 2011.
  10. S. Cho and S. Lee, “Fast motion deblurring,” in ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, (New York, NY, USA), Association for Computing Machinery, 2009.
  11. T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman, “Blur kernel estimation using the radon transform,” in CVPR 2011, pp. 241–248, 2011.
  12. J. H. Money and S. H. Kang, “Total variation minimizing blind deconvolution with shock filter reference,” Image and Vision Computing, vol. 26, no. 2, pp. 302–314, 2008.
  13. J. Jia, “Single image motion deblurring using transparency,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007.
  14. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient marginal likelihood optimization in blind deconvolution,” in CVPR 2011, pp. 2657–2664, 2011.
  15. R. Yan and L. Shao, “Blind image blur estimation via deep learning,” IEEE Transactions on Image Processing, vol. 25, no. 4, pp. 1910–1921, 2016.
  16. Y. Zhang, Y. Xiang, and L. Bai, “Generative adversarial network for deblurring of remote sensing image,” in 2018 26th International Conference on Geoinformatics, pp. 1–4, 2018.
  17. L. Li, J. Pan, W.-S. Lai, C. Gao, N. Sang, and M.-H. Yang, “Learning a discriminative prior for blind image deblurring,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
  18. O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring for shaken images,” International journal of computer vision, vol. 98, pp. 168–186, 2012.
  19. M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf, “Fast removal of non-uniform camera shake,” in 2011 International Conference on Computer Vision, pp. 463–470, 2011.
  20. M. Hirsch, S. Sra, B. Schölkopf, and S. Harmeling, “Efficient filter flow for space-variant multiframe blind deconvolution,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 607–614, IEEE, 2010.
  21. D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian priors,” Advances in neural information processing systems, vol. 22, 2009.
  22. J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.
  23. X. Xu, J. Pan, Y.-J. Zhang, and M.-H. Yang, “Motion blur kernel estimation via deep learning,” IEEE Transactions on Image Processing, vol. 27, no. 1, pp. 194–205, 2018.
  24. A. V. Nasonov and A. A. Nasonova, “Linear blur parameters estimation using a convolutional neural network,” Pattern Recognition and Image Analysis, vol. 32, no. 3, pp. 611–615, 2022.
  25. G. Carbajal, P. Vitoria, M. Delbracio, P. Musé, and J. Lezama, “Non-uniform blur kernel estimation via adaptive basis decomposition,” arXiv preprint arXiv:2102.01026, 2021.
  26. D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. van den Hengel, and Q. Shi, “From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
  27. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755, Springer, 2014.
  28. J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Syst. J., vol. 4, p. 25–30, Mar 1965.
  29. D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Computer Science, vol. 7, 2021.
  30. D. Zoran and Y. Weiss, “From learning models of natural image patches to whole image restoration,” in 2011 international conference on computer vision, pp. 479–486, IEEE, 2011.
  31. R. Friedman, “EPLL PyTorch Implementation.” https://github.com/friedmanroy/torchEPLL. Accessed: 2023-02-05.
  32. S. Wu, G. Wang, P. Tang, F. Chen, and L. Shi, “Convolution with even-sized kernels and symmetric padding,” in Advances in Neural Information Processing Systems, vol. 32, 2019.
  33. A. Levin, Y. Weiss, F. Durand, and W. Freeman, “Efficient marginal likelihood optimization in blind deconvolution.” https://webee.technion.ac.il/people/anat.levin/. Accessed: 2023-02-05.
  34. D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure.” https://dilipkay.wordpress.com/blind-deconvolution/. Accessed: 2023-02-05.
  35. G. Carbajal, P. Vitoria, M. Delbracio, and P. Musé, “Non-uniform motion blur kernel estimation via adaptive decomposition.” https://github.com/GuillermoCarbajal/NonUniformBlurKernelEstimation. Accessed: 2024-02-12.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Luis G. Varela (2 papers)
  2. Laura E. Boucheron (10 papers)
  3. Steven Sandoval (6 papers)
  4. David Voelz (5 papers)
  5. Abu Bucker Siddik (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com