Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase-only Image Based Kernel Estimation for Single-image Blind Deblurring (1811.10185v3)

Published 26 Nov 2018 in cs.CV

Abstract: The image blurring process is generally modelled as the convolution of a blur kernel with a latent image. Therefore, the estimation of the blur kernel is essentially important for blind image deblurring. Unlike existing approaches which focus on approaching the problem by enforcing various priors on the blur kernel and the latent image, we are aiming at obtaining a high quality blur kernel directly by studying the problem in the frequency domain. We show that the auto-correlation of the absolute phase-only image can provide faithful information about the motion (e.g. the motion direction and magnitude, we call it the motion pattern in this paper.) that caused the blur, leading to a new and efficient blur kernel estimation approach. The blur kernel is then refined and the sharp image is estimated by solving an optimization problem by enforcing a regularization on the blur kernel and the latent image. We further extend our approach to handle non-uniform blur, which involves spatially varying blur kernels. Our approach is evaluated extensively on synthetic and real data and shows good results compared to the state-of-the-art deblurring approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Liyuan Pan (27 papers)
  2. Richard Hartley (73 papers)
  3. Miaomiao Liu (42 papers)
  4. Yuchao Dai (123 papers)
Citations (57)

Summary

We haven't generated a summary for this paper yet.