Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EmbeddingTree: Hierarchical Exploration of Entity Features in Embedding (2308.01329v1)

Published 2 Aug 2023 in cs.LG and cs.AI

Abstract: Embedding learning transforms discrete data entities into continuous numerical representations, encoding features/properties of the entities. Despite the outstanding performance reported from different embedding learning algorithms, few efforts were devoted to structurally interpreting how features are encoded in the learned embedding space. This work proposes EmbeddingTree, a hierarchical embedding exploration algorithm that relates the semantics of entity features with the less-interpretable embedding vectors. An interactive visualization tool is also developed based on EmbeddingTree to explore high-dimensional embeddings. The tool helps users discover nuance features of data entities, perform feature denoising/injecting in embedding training, and generate embeddings for unseen entities. We demonstrate the efficacy of EmbeddingTree and our visualization tool through embeddings generated for industry-scale merchant data and the public 30Music listening/playlists dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.