Quantum simulation of dissipation for Maxwell equations in dispersive media (2308.00056v2)
Abstract: In dispersive media, dissipation appears in the Schr\"odinger representation of classical Maxwell equations as a sparse diagonal operator occupying an $r$-dimensional subspace. A first order Suzuki-Trotter approximation for the evolution operator enables us to isolate the non-unitary operators (associated with dissipation) from the unitary operators (associated with lossless media). The unitary operators can be implemented through qubit lattice algorithm (QLA) on $n$ qubits. However, the non-unitary-dissipative part poses a challenge on how it should be implemented on a quantum computer. In this paper, two probabilistic dilation algorithms are considered for handling the dissipative operators. The first algorithm is based on treating the classical dissipation as a linear amplitude damping-type completely positive trace preserving (CPTP) quantum channel where the combined system-environment must undergo unitary evolution in the dilated space. The unspecified environment can be modeled by just one ancillary qubit, resulting in an implementation scaling of $\textit{O}(2{n-1}n2)$ elementary gates for the dilated unitary evolution operator. The second algorithm approximates the non-unitary operators by the Linear Combination of Unitaries (LCU). We obtain an optimized representation of the non-unitary part, which requires $\textit{O}(2{n})$ elementary gates. Applying the LCU method for a simple dielectric medium with homogeneous dissipation rate, the implementation scaling can be further reduced into $\textit{O}[poly(n)]$ basic gates. For the particular case of weak dissipation we show that our proposed post-selective dilation algorithms can efficiently delve into the transient evolution dynamics of dissipative systems by calculating the respective implementation circuit depth. A connection of our results with the non-linear-in-normalization-only (NINO) quantum channels is also presented.
- doi:10.1038/s41586-019-1666-5.
- doi:10.1103/PhysRevLett.127.180501.
- doi:10.1016/j.aop.2009.11.007.
- doi:10.1238/Physica.Regular.071a00440.
- doi:10.1088/1367-2630/9/11/414.
- doi:10.1103/PhysRevA.107.042215.
- doi:10.1017/S0022377820001166.
- doi:10.1063/5.0067204.
- doi:10.1016/j.compfluid.2023.106039.
- doi:10.1017/CBO9780511976667.
- doi:10.1103/PhysRevA.69.054102.
- doi:10.1038/s41598-020-60321-x.
- doi:10.1103/PhysRevA.104.052420.
- doi:10.1103/PhysRevA.106.022414.
- doi:10.48550/arXiv.2207.07112.
- doi:10.48550/arXiv.2311.10143.
- doi:10.1007/978-3-030-51945-2_28.
- doi:10.1103/PhysRevA.57.4818.
- doi:10.1007/s10955-004-8783-7.
- doi:https://doi.org/10.1016/j.camwa.2017.07.025.
- doi:10.1088/0253-6102/45/5/013.
- doi:10.1137/16M1087072.
- doi:10.1038/s41598-021-83521-5.
- doi:10.1515/9781400842650.
- doi:10.1103/PhysRevB.92.125153.
- doi:10.1063/5.0177589.
- doi:10.1103/PhysRevA.95.042343.
- doi:10.1103/PhysRevLett.80.5243.
- doi:10.1063/1.1418246.
- doi:10.3367/UFNe.0184.201411b.1177.
- doi:10.1007/BF01608499.
- doi:10.1063/1.522979.
- doi:10.1103/PhysRevLett.129.230504.
- doi:10.1103/PhysRevB.105.054304.
- doi:10.1080/00018732.2014.933502.
- doi:10.1103/PhysRevX.11.011020.
- doi:10.1103/PhysRevLett.93.130502.
- doi:10.2307/2032342.
- doi:10.1016/j.aop.2019.167955.
- doi:10.22331/q-2021-03-23-420.
- doi:10.1002/qute.202200156.
- doi:10.1088/1572-9494/acf304.
- doi:10.1103/PhysRevLett.109.230405.
- doi:10.1103/PhysRevE.106.054135.
- doi:10.5555/2011572.2011575.
- doi:10.1142/S0129183199001108.
- doi:10.1038/s41567-019-0704-4.
- doi:10.1103/PRXQuantum.3.010320.
- doi:110.1088/2058-9565/ad17d8.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.