Single-rotating Five-dimensional Near-horizon Extremal Geometry in General Relativity (2307.16534v2)
Abstract: The geometries with SL$(2,\mathbb{R})$ and some axial U$(1)$ isometries are called ``near-horizon extremal geometries" and are found usually, but not necessarily, in the near-horizon limit of the extremal black holes. We present a new member of this family of solutions in five-dimensional Einstein-Hilbert gravity that has only one nonzero angular momentum. In contrast with the single-rotating Myers-Perry extremal black hole and its near-horizon geometry in five dimensions, this solution may have a nonvanishing and finite entropy. Although there is a uniqueness theorem that prohibits the existence of such single-rotating near-horizon geometries in five-dimensional general relativity, this solution has a curvature singularity at one of the poles, which breaks the smoothness conditions in the theorem.
- Jacob D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, 7, 2333–2346, (1973).
- S. W. Hawking, “Black hole explosions,” Nature 248 (1974), 30-31.
- S.W. Hawking, “Particle Creation by Black Holes”, Commun.Math.Phys. 43, 199–220, (1975).
- James M. Bardeen, B. Carter, and S.W. Hawking, “The Four laws of black hole mechanics”, Commun.Math.Phys., 31, 161–170, (1973).
- J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60 (1999) 104030, [hep-th/9905099].
- A. Sen, “Black Hole Entropy Function, Attractors and Precision Counting of Microstates,” Gen. Rel. Grav. 40 (2008) 2249, [arXiv:0708.1270].
- M. Guica, T. Hartman, W. Song, A. Strominger, “The Kerr/CFT Correspondence,” Phys. Rev. D 80 (2009) 124008, [arXiv:0809.4266].
- G. Compère, K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “Extremal Rotating Black Holes in the Near-Horizon Limit: Phase Space and Symmetry Algebra,” Phys. Lett. B 749 (2015), 443-447 [arXiv:1503.07861].
- G. Compère, K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “Wiggling Throat of Extremal Black Holes,” JHEP 10 (2015), 093 [arXiv:1506.07181].
- K. Hajian, M. M. Sheikh-Jabbari and H. Yavartanoo, “Extreme Kerr black hole microstates with horizon fluff,” Phys. Rev. D 98 (2018) no.2, 026025, [arXiv:1708.06378].
- H. K. Kunduri and J. Lucietti, “A Classification of near-horizon geometries of extremal vacuum black holes,” J. Math. Phys. 50 (2009) 082502, [arXiv:0806.2051].
- H. K. Kunduri and J. Lucietti, “Classification of near-horizon geometries of extremal black holes,”Living Rev. Rel. 16 (2013) 8, [arXiv:1306.2517].
- G. Compere, “The Kerr/CFT correspondence and its extensions: a comprehensive review,” Living Rev. Rel. 15 (2012) 11 , [arXiv:1203.3561].
- K. Hajian, “On Thermodynamics and Phase Space of Near Horizon Extremal Geometries”, Ph.D thesis, (2015), [arXiv:1508.03494].
- H. K. Kunduri, J. Lucietti and H. S. Reall, “Near-horizon symmetries of extremal black holes,” Class. Quant. Grav. 24 (2007) 4169, [arXiv:0705.4214].
- R. C. Myers and M. J. Perry, “Black Holes in Higher Dimensional Space-Times,” Annals Phys. 172 (1986), 304
- R. Fareghbal, C. N. Gowdigere, A. E. Mosaffa and M. M. Sheikh-Jabbari, “Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM,” JHEP 08 (2008), 070 [arXiv:0801.4457].
- R. Fareghbal, C. N. Gowdigere, A. E. Mosaffa and M. M. Sheikh-Jabbari, “Nearing 11d Extremal Intersecting Giants and New Decoupled Sectors in D = 3,6 SCFT’s,” Phys. Rev. D 81 (2010), 046005 [arXiv:0805.0203].
- M. M. Sheikh-Jabbari and H. Yavartanoo, “EVH Black Holes, AdS3 Throats and EVH/CFT Proposal,” JHEP 10 (2011), 013, [arXiv:1107.5705].
- H. Golchin, M. M. Sheikh-Jabbari and A. Ghodsi, “Dual 2d CFT Identification of Extremal Black Rings from Holes,” JHEP 10 (2013), 194 [arXiv:1308.1478].
- S. Sadeghian, M. M. Sheikh-Jabbari and H. Yavartanoo, “On Classification of Geometries with SO(2,2) Symmetry,” JHEP 10 (2014), 081 [arXiv:1409.1635].
- S. Sadeghian, M. M. Sheikh-Jabbari, M. H. Vahidinia and H. Yavartanoo, “Near Horizon Structure of Extremal Vanishing Horizon Black Holes,” Nucl. Phys. B 900 (2015), 222-243 [arXiv:1504.03607].
- S. Sadeghian, M. M. Sheikh-Jabbari, M. H. Vahidinia and H. Yavartanoo, “Three Theorems on Near Horizon Extremal Vanishing Horizon Geometries,” Phys. Lett. B 753 (2016), 488-492 [arXiv:1512.06186].
- S. M. Noorbakhsh and M. H. Vahidinia, “Extremal Vanishing Horizon Kerr-AdS Black Holes at Ultraspinning Limit,” JHEP 01 (2018), 042, [arXiv:1708.08654].
- S. Sadeghian and M. H. Vahidinia, “AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT to dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT transition in the near horizon of asymptotically de Sitter solutions,” Phys. Rev. D 96 (2017) no.4, 044004 [arXiv:1703.01771].
- H. Demirchyan, A. Nersessian, S. Sadeghian and M. M. Sheikh-Jabbari, “Integrability of Geodesics in Near-Horizon Extremal Vanishing Horizon Myers–Perry Black Holes,” Phys. Atom. Nucl. 81 (2018) no.6, 907-911.
- J. Lee and R. M. Wald, “Local symmetries and constraints”, J. Math. Phys., 31, 725–743, (1990).
- A. Ashtekar, L. Bombelli, and R. Koul, “Phase space formulation of general relativity without a 3+1 splitting”, Lect. Notes Phys., 278, 356–359, (1987).
- A. Ashtekar, L. Bombelli, and O. Reula, “The covariant phase space of asymptotically flat gravitational fields”, in M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years after Lagrange, 417-450, (1990).
- C. Crnkovic and E. Witten, “Covariant Description Of Canonical Formalism In Geometrical Theories”, In Hawking, S.W. (ed.), Israel, W. (ed.): Three hundred years of gravitation, 676-684, (1987).
- R. M. Wald, “Black hole entropy is the Noether charge”, Phys. Rev. D, 48, 3427–3431, (1993), [arXiv:gr-qc/9307038].
- V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846–864, (1994), [arXiv:gr-qc/9403028].
- R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general relativity and other theories of gravity”, Phys. Rev. D, 61, 084027, (2000), [arXiv:gr-qc/9911095].
- G. Barnich and F. Brandt, “Covariant theory of asymptotic symmetries, conservation laws and central charges,” Nucl. Phys. B 633 (2002), 3-82 [arXiv:hep-th/0111246].
- G. Barnich and G. Compere, “Surface charge algebra in gauge theories and thermodynamic integrability,” J. Math. Phys. 49 (2008), 042901 [arXiv:0708.2378].
- K. Hajian and M. M. Sheikh-Jabbari, “Solution Phase Space and Conserved Charges: A General Formulation for Charges Associated with Exact Symmetries”, Phys. Rev. D, 93, 4044074, (2016), [arXiv:1512.05584].
- M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett., 69, 1849, (1992), [arXiv:hep-th/9204099].
- J. de Boer, M. Johnstone, M. M. Sheikh-Jabbari and J. Simon, “Emergent IR Dual 2d CFTs in Charged AdS5 Black Holes,” Phys. Rev. D 85 (2012), 084039 [arXiv:1112.4664].
- M. Johnstone, M. M. Sheikh-Jabbari, J. Simon and H. Yavartanoo, “Extremal black holes and the first law of thermodynamics,” Phys. Rev. D 88 (2013) no.10, 101503 [arXiv:1305.3157].
- K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “NHEG Mechanics: Laws of Near Horizon Extremal Geometry (Thermo)Dynamics,” JHEP 03 (2014), 014 [arXiv:1310.3727].
- K. Hajian, A. Seraj, and M. Sheikh-Jabbari, “Near Horizon Extremal Geometry Perturbations: Dynamical Field Perturbations vs. Parametric Variations,” JHEP 1410 (2014) 111, [arXiv:1407.1992].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.