Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling Exotic Magnetic Phases in Fibonacci Quasicrystalline Stacking of Ferromagnetic Layers through Machine Learning (2307.16052v1)

Published 29 Jul 2023 in cond-mat.str-el, cond-mat.mes-hall, and cs.LG

Abstract: In this study, we conduct a comprehensive theoretical analysis of a Fibonacci quasicrystalline stacking of ferromagnetic layers, potentially realizable using van der Waals magnetic materials. We construct a model of this magnetic heterostructure, which includes up to second neighbor interlayer magnetic interactions, that displays a complex relationship between geometric frustration and magnetic order in this quasicrystalline system. To navigate the parameter space and identify distinct magnetic phases, we employ a machine learning approach, which proves to be a powerful tool in revealing the complex magnetic behavior of this system. We offer a thorough description of the magnetic phase diagram as a function of the model parameters. Notably, we discover among other collinear and non-collinear phases, a unique ferromagnetic alternating helical phase. In this non-collinear quasiperiodic ferromagnetic configuration the magnetization decreases logarithmically with the stack height.

Summary

We haven't generated a summary for this paper yet.