Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase-Field Modeling of Fracture for Ferromagnetic Materials through Maxwell's Equation (2404.07346v2)

Published 10 Apr 2024 in math.NA and cs.NA

Abstract: Electro-active materials are classified as electrostrictive and piezoelectric materials. They deform under the action of an external electric field. Piezoelectric material, as a special class of active materials, can produce an internal electric field when subjected to mechanical stress or strain. In return, there is the converse piezoelectric response, which expresses the induction of the mechanical deformation in the material when it is subjected to the application of the electric field. This work presents a variational-based computational modeling approach for failure prediction of ferromagnetic materials. In order to solve this problem, a coupling between magnetostriction and mechanics is modeled, then the fracture mechanism in ferromagnetic materials is investigated. Furthermore, the failure mechanics of ferromagnetic materials under the magnetostrictive effects is studied based on a variational phase-field model of fracture. Phase-field fracture is numerically challenging since the energy functional may admit several local minima, imposing the global irreversibility of the fracture field and dependency of regularization parameters related discretization size. Here, the failure behavior of a magnetoelastic solid body is formulated based on the Helmholtz free energy function, in which the strain tensor, the magnetic induction vector, and the crack phase-field are introduced as state variables. This coupled formulation leads to a continuity equation for the magnetic vector potential through well-known Maxwell's equations. Hence, the energetic crack driving force is governed by the coupled magneto-mechanical effects under the magneto-static state. Several numerical results substantiate our developments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (105)
  1. S. John, J. Sirohi, G. Wang, and N. M. Wereley, “Comparison of piezoelectric, magnetostrictive, and electrostrictive hybrid hydraulic actuators,” Journal of intelligent material systems and structures, vol. 18, no. 10, pp. 1035–1048, 2007.
  2. Y. Bar-Cohen and Q. Zhang, “Electroactive polymer actuators and sensors,” MRS bulletin, vol. 33, no. 3, pp. 173–181, 2008.
  3. K. J. Kim and S. Tadokoro, “Electroactive polymers for robotic applications,” Artificial Muscles and Sensors, vol. 23, p. 291, 2007.
  4. D. Berlincourt, Ultrasonic transducer materials. Springer, 1971.
  5. R. Guldiken and O. Onen, “5 - mems ultrasonic transducers for biomedical applications,” in MEMS for Biomedical Applications (S. Bhansali and A. Vasudev, eds.), Woodhead Publishing Series in Biomaterials, pp. 120–149, Woodhead Publishing, 2012.
  6. D. Damjanovic and R. Newnham, “Electrostrictive and piezoelectric materials for actuator applications,” Journal of intelligent material systems and structures, vol. 3, no. 2, pp. 190–208, 1992.
  7. B. C. Sekhar, B. Dhanalakshmi, B. S. Rao, S. Ramesh, K. V. Prasad, P. S. Rao, and B. P. Rao, “Piezoelectricity and its applications,” Multifunctional Ferroelectric Materials, p. 71, 2021.
  8. J. P. Joule, “On a new class of magnetic forces,” Ann. Electr. Magn. Chem, vol. 8, no. 1842, pp. 219–224, 1842.
  9. E. Villari, “Intorno alle modificazioni del momento magnetico di una verga di ferro e di acciaio, prodotte per la trazione della medesima e pel passaggio di una corrente attraverso la stessa,” Il Nuovo Cimento (1855-1868), vol. 20, no. 1, pp. 317–362, 1864.
  10. C. Birk, M. Reichel, and J. Schröder, “Magnetostatic simulations with consideration of exterior domains using the scaled boundary finite element method,” Computer Methods in Applied Mechanics and Engineering, vol. 399, p. 115362, 2022.
  11. I. Brigadnov and A. Dorfmann, “Mathematical modeling of magneto-sensitive elastomers,” International Journal of Solids and Structures, vol. 40, no. 18, pp. 4659–4674, 2003.
  12. A. Dorfmann and R. Ogden, “Magnetoelastic modelling of elastomers,” European Journal of Mechanics - A/Solids, vol. 22, no. 4, pp. 497–507, 2003.
  13. A. Dorfmann, R. Ogden, and G. Saccomandi, “Universal relations for non-linear magnetoelastic solids,” International Journal of Non-Linear Mechanics, vol. 39, no. 10, pp. 1699–1708, 2004.
  14. J. D. Thomas and N. Triantafyllidis, “On electromagnetic forming processes in finitely strained solids: Theory and examples,” Journal of the Mechanics and Physics of Solids, vol. 57, no. 8, pp. 1391–1416, 2009.
  15. A. Belahcen, K. Fonteyn, S. Fortino, and R. Kouhia, “A coupled magnetoelastic model for ferromagnetic materials,” Proc. of the IX Finnish Mechanics Days. von Hertzen R., Halme T.(eds.), pp. 673–682, 2006.
  16. K. A. Fonteyn, Energy-based magneto-mechanical model for electrical steel sheets. PhD thesis, Aalto-yliopiston Teknillinen Korkeakoulu, 2010.
  17. K. Fonteyn, A. Belahcen, R. Kouhia, P. Rasilo, and A. Arkkio, “Fem for directly coupled magneto-mechanical phenomena in electrical machines,” IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 2923–2926, 2010.
  18. P. Rasilo, D. Singh, J. Jeronen, U. Aydin, F. Martin, A. Belahcen, L. Daniel, and R. Kouhia, “Flexible identification procedure for thermodynamic constitutive models for magnetostrictive materials,” Proceedings of the Royal Society A, vol. 475, no. 2223, p. 20180280, 2019.
  19. C. Miehe, D. Rosato, and B. Kiefer, “Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials,” International Journal for Numerical Methods in Engineering, vol. 86, no. 10, pp. 1225–1276, 2011.
  20. C. Miehe and G. Ethiraj, “A geometrically consistent incremental variational formulation for phase field models in micromagnetics,” Computer methods in applied mechanics and engineering, vol. 245, pp. 331–347, 2012.
  21. G. Ethiraj, Computational modeling of ferromagnetics and magnetorheological elastomers. 2014.
  22. G. Ethiraj and C. Miehe, “Multiplicative magneto-elasticity of magnetosensitive polymers incorporating micromechanically-based network kernels,” International Journal of Engineering Science, vol. 102, pp. 93–119, 2016.
  23. N. Hanappier, E. Charkaluk, and N. Triantafyllidis, “A coupled electromagnetic-thermomechanical approach for the modeling of electric motors,” Journal of the Mechanics and Physics of Solids, vol. 149, p. 104315, 2021.
  24. B. Zhang, Y. Kou, K. Jin, and X. Zheng, “A multi-field coupling model for the magnetic-thermal-structural analysis in the electromagnetic rail launch,” Journal of Magnetism and Magnetic Materials, vol. 519, p. 167495, 2021.
  25. Z. Ma, H. Zhao, W. Liu, and L. Ren, “Thermo-mechanical coupled in situ fatigue device driven by piezoelectric actuator,” Precision Engineering, vol. 46, pp. 349–359, 2016.
  26. L. Zhou, J. Tang, W. Tian, B. Xue, and X. Li, “A multi-physics coupling cell-based smoothed finite element micromechanical model for the transient response of magneto-electro-elastic structures with the asymptotic homogenization method,” Thin-Walled Structures, vol. 165, p. 107991, 2021.
  27. G. A. Francfort and J.-J. Marigo, “Revisiting brittle fracture as an energy minimization problem,” Journal of the Mechanics and Physics of Solids, vol. 46, no. 8, pp. 1319–1342, 1998.
  28. B. Bourdin, G. A. Francfort, and J.-J. Marigo, “The variational approach to fracture,” Journal of Elasticity, vol. 91, no. 1, pp. 5–148, 2008.
  29. G. Dal Maso and R. Toader, “A model for the quasi-static growth of brittle fractures: Existence and approximation results,” Archive for Rational Mechanics and Analysis, vol. 162, no. 2, pp. 101–135, 2002.
  30. D. B. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Communications on Pure and Applied Mathematics, 1989.
  31. V. Hakim and A. Karma, “Laws of crack motion and phase-field models of fracture,” Journal of the Mechanics and Physics of Solids, vol. 57, no. 2, pp. 342–368, 2009.
  32. C. Miehe, M. Hofacker, and F. Welschinger, “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 45, pp. 2765–2778, 2010.
  33. C. Miehe, F. Welschinger, and M. Hofacker, “A phase field model of electromechanical fracture,” Journal of the Mechanics and Physics of Solids, vol. 58, no. 10, pp. 1716–1740, 2010.
  34. C. Linder and C. Miehe, “Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics,” Journal of the Mechanics and Physics of Solids, vol. 60, no. 5, pp. 882–903, 2012.
  35. P. Monk et al., Finite element methods for Maxwell’s equations. Oxford University Press, 2003.
  36. Cambridge University Press, 2004.
  37. N. Noii, M. Fan, T. Wick, and Y. Jin, “A quasi-monolithic phase-field description for orthotropic anisotropic fracture with adaptive mesh refinement and primal–dual active set method,” Engineering Fracture Mechanics, vol. 258, p. 108060, 2021.
  38. N. Noii, F. Aldakheel, T. Wick, and P. Wriggers, “An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture,” Computer Methods in Applied Mechanics and Engineering, vol. 361, p. 112744, 2020.
  39. Cengage Learning, 2012.
  40. W. Emery and A. Camps, “Chapter 2 - basic electromagnetic concepts and applications to optical sensors,” in Introduction to Satellite Remote Sensing (W. Emery and A. Camps, eds.), pp. 43–83, Elsevier, 2017.
  41. N. A. Spaldin, Magnetic materials: fundamentals and applications. Cambridge university press, 2010.
  42. J. Fliegans, O. Tosoni, N. Dempsey, and G. Delette, “Modeling of demagnetization processes in permanent magnets measured in closed-circuit geometry,” Applied Physics Letters, vol. 116, no. 6, p. 062405, 2020.
  43. C. Bruzzese, Theory of Electrical Machines. Società Editrice Esculapio, 2022.
  44. J. D. Jackson, “Classical electrodynamics,” 1999.
  45. F. Melia, Electrodynamics. Chicago Lectures in Physics, University of Chicago Press, 2001.
  46. H. van Hees, “Comment on ’defining the electromagnetic potentials’,” European Journal of Physics, vol. 42, no. 2, p. 028003, 2021.
  47. T. Maudlin, “Ontological clarity via canonical presentation: Electromagnetism and the aharonov–bohm effect,” Entropy, vol. 20, no. 6, p. 465, 2018.
  48. J. D. Powell and A. E. Zielinski, “Two-dimensional current diffusion in the rails of a railgun,” tech. rep., Army Research LAB ABERDEEN Proving Ground MD Weapons and Materials Research, 2008.
  49. B. Bourdin, G. Francfort, and J.-J. Marigo, “Numerical experiments in revisited brittle fracture,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 4, pp. 797–826, 2000.
  50. G. Francfort and J.-J. Marigo, “Revisiting brittle fracture as an energy minimization problem,” Journal of the Mechanics and Physics of Solids, vol. 46, no. 8, pp. 1319–1342, 1998.
  51. D. Kienle, F. Aldakheel, and M.-A. Keip, “A finite-strain phase-field approach to ductile failure of frictional materials,” International Journal of Solids and Structures, vol. 172, pp. 147–162, 2019.
  52. M. Dittmann, F. Aldakheel, J. Schulte, F. Schmidt, M. Krüger, P. Wriggers, and C. Hesch, “Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids,” Computer Methods in Applied Mechanics and Engineering, vol. 361, p. 112730, 2020.
  53. H. Ruan, S. Rezaei, Y. Yang, D. Gross, and B.-X. Xu, “A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing,” Journal of the Mechanics and Physics of Solids, p. 105169, 2022.
  54. Z. Peng, Q. Wang, W. Zhou, X. Chang, Q. Yue, and C. Huang, “Meso-scale simulation of thermal fracture in concrete based on the coupled thermal–mechanical phase-field model,” Construction and Building Materials, vol. 403, p. 133095, 2023.
  55. M. Ambati, R. Kruse, and L. De Lorenzis, “A phase-field model for ductile fracture at finite strains and its experimental verification,” Computational Mechanics, vol. 57, pp. 149–167, 2016.
  56. B. Yin and M. Kaliske, “A ductile phase-field model based on degrading the fracture toughness: Theory and implementation at small strain,” Computer Methods in Applied Mechanics and Engineering, vol. 366, p. 113068, 2020.
  57. N. Noii, A. Khodadadian, J. Ulloa, F. Aldakheel, T. Wick, S. François, and P. Wriggers, “Bayesian inversion for unified ductile phase-field fracture,” Computational Mechanics, vol. 68, no. 4, pp. 943–980, 2021.
  58. Y. Heider and W. Sun, “A phase field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking,” Computer Methods in Applied Mechanics and Engineering, vol. 359, p. 112647, 2020.
  59. J. Ulloa, N. Noii, R. Alessi, F. Aldakheel, G. Degrande, and S. François, “Variational modeling of hydromechanical fracture in saturated porous media: A micromechanics-based phase-field approach,” Computer Methods in Applied Mechanics and Engineering, vol. 396, p. 115084, 2022.
  60. N. Noii and T. Wick, “A phase-field description for pressurized and non-isothermal propagating fractures,” Computer Methods in Applied Mechanics and Engineering, vol. 351, pp. 860–890, 2019.
  61. N. Noii, A. Khodadadian, J. Ulloa, F. Aldakheel, T. Wick, S. François, and P. Wriggers, “Bayesian inversion with open-source codes for various one-dimensional model problems in computational mechanics,” Archives of Computational Methods in Engineering, pp. 1–34, 2022.
  62. N. Noii, A. Khodadadian, and F. Aldakheel, “Probabilistic failure mechanisms via monte carlo simulations of complex microstructures,” Computer Methods in Applied Mechanics and Engineering, vol. 399, p. 115358, 2022.
  63. N. Noii, A. Khodadadian, and T. Wick, “Bayesian inversion for anisotropic hydraulic phase-field fracture,” Computer Methods in Applied Mechanics and Engineering, vol. 386, p. 114118, 2021.
  64. N. Noii, A. Khodadadian, and T. Wick, “Bayesian inversion using global-local forward models applied to fracture propagation in porous media,” International Journal for Multiscale Computational Engineering, vol. 20, no. 3, 2022.
  65. N. Noii, H. A. Jahangiry, and H. Waisman, “Level-set topology optimization for ductile and brittle fracture resistance using the phase-field method,” Computer Methods in Applied Mechanics and Engineering, vol. 409, p. 115963, 2023.
  66. Z. Liu, J. Reinoso, and M. Paggi, “Phase field modeling of brittle fracture in large-deformation solid shells with the efficient quasi-newton solution and global–local approach,” Computer Methods in Applied Mechanics and Engineering, vol. 399, p. 115410, 2022.
  67. F. Aldakheel, N. Noii, T. Wick, and P. Wriggers, “A global–local approach for hydraulic phase-field fracture in poroelastic media,” Computers and Mathematics with Applications, 2020.
  68. F. Aldakheel, N. Noii, T. Wick, O. Allix, and P. Wriggers, “Multilevel global–local techniques for adaptive ductile phase-field fracture,” Computer Methods in Applied Mechanics and Engineering, vol. 387, p. 114175, 2021.
  69. T. Hageman and E. Martínez-Pañeda, “An electro-chemo-mechanical framework for predicting hydrogen uptake in metals due to aqueous electrolytes,” Corrosion Science, vol. 208, p. 110681, 2022.
  70. J.-Y. Wu and Y.-F. Hong, “Crack nucleation and propagation of electromagneto-thermo-mechanical fracture in bulk superconductors during magnetization,” Journal of the Mechanics and Physics of Solids, p. 105168, 2022.
  71. Y. Zhao, R. Wang, and E. Martínez-Pañeda, “A phase field electro-chemo-mechanical formulation for predicting void evolution at the li–electrolyte interface in all-solid-state batteries,” Journal of the Mechanics and Physics of Solids, vol. 167, p. 104999, 2022.
  72. C. Kuhn, A. Schlüter, and R. Müller, “On degradation functions in phase field fracture models,” Computational Materials Science, vol. 108, pp. 374–384, 2015.
  73. J.-Y. Wu, “A unified phase-field theory for the mechanics of damage and quasi-brittle failure,” Journal of the Mechanics and Physics of Solids, vol. 103, pp. 72–99, 2017.
  74. J.-Y. Wu, V. Nguyen, C. Nguyen, D. Sutula, S. Bordas, and S. Sinaie, “Phase field modeling of fracture,” Advances in Applied Mechancis: Multi-Scale Theory and Computation, vol. 52, 2018.
  75. C. Miehe, M. Hofacker, and F. Welschinger, “A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits,” Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 45-48, pp. 2765–2778, 2010.
  76. C. Miehe, L.-M. Schaenzel, and H. Ulmer, “Phase field modeling of fracture in multi-physics problems. part i. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids,” Computer Methods in Applied Mechanics and Engineering, vol. 294, pp. 449–485, 2015.
  77. S. Lee, M. F. Wheeler, and T. Wick, “Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model,” Computer Methods in Applied Mechanics and Engineering, vol. 305, pp. 111–132, 2016.
  78. C. Miehe and S. Mauthe, “Phase field modeling of fracture in multi-physics problems. part iii. crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 304, pp. 619–655, 2016.
  79. Y.-H. Pao and K. Hutter, “Electrodynamics for moving elastic solids and viscous fluids,” Proceedings of the IEEE, vol. 63, no. 7, pp. 1011–1021, 1975.
  80. L. Daniel, L. Bernard, and O. Hubert, “Multiscale modeling of magnetic materials,” 2020.
  81. A. Flatau, M. Dapino, and F. Calkins, “5.26 - magnetostrictive composites,” in Comprehensive Composite Materials (A. Kelly and C. Zweben, eds.), pp. 563–574, Oxford: Pergamon, 2000.
  82. C. Gao, Z. Zeng, S. Peng, and C. Shuai, “Magnetostrictive alloys: Promising materials for biomedical applications,” Bioactive Materials, vol. 8, pp. 177–195, 2022.
  83. M. J. Dapino, “On magnetostrictive materials and their use in adaptive structures,” Structural Engineering and Mechanics, vol. 17, no. 3-4, pp. 303–330, 2004.
  84. A. Khodadadian, N. Noii, M. Parvizi, M. Abbaszadeh, T. Wick, and C. Heitzinger, “A bayesian estimation method for variational phase-field fracture problems,” Computational Mechanics, vol. 66, no. 4, pp. 827–849, 2020.
  85. Q. Wang, Y. Feng, W. Zhou, Y. Cheng, and G. Ma, “A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion,” Computer Methods in Applied Mechanics and Engineering, vol. 370, p. 113270, 2020.
  86. Q. Wang, Q. Yue, W. Zhou, Y. Feng, and X. Chang, “Modeling of both tensional-shear and compressive-shear fractures by a unified phase-field model,” Applied Mathematical Modelling, vol. 117, pp. 162–196, 2023.
  87. Oxford University Press Oxford, 2000.
  88. B. Wu and M. Destrade, “Wrinkling of soft magneto-active plates,” International Journal of Solids and Structures, vol. 208, pp. 13–30, 2021.
  89. C. Trimarco, “Stresses and momenta in electromagnetic materials,” Mechanics Research Communications, vol. 29, no. 6, pp. 485–492, 2002.
  90. X. Zheng and K. Jin, “Magnetic force models for magnetizable elastic bodies in the magnetic field,” From Waves in Complex Systems to Dynamics of Generalized Continua: Tributes to Professor Yih-Hsing Pao on His 80th Birthday, pp. 353–383, 2011.
  91. K. Henjes, “The traction force in magnetic separators,” Measurement Science and Technology, vol. 5, no. 9, p. 1105, 1994.
  92. C. Rinaldi and H. Brenner, “Body versus surface forces in continuum mechanics: Is the maxwell stress tensor a physically objective cauchy stress?,” Physical Review E, vol. 65, no. 3, p. 036615, 2002.
  93. S. A. Mauthe, Variational multiphysics modeling of diffusion in elastic solids and hydraulic fracturing in porous media. Stuttgart: Institut fur Mechanik (Bauwesen), 2017.
  94. C. Miehe, S. Mauthe, and S. Teichtmeister, “Minimization principles for the coupled problem of darcy–biot-type fluid transport in porous media linked to phase field modeling of fracture,” Journal of the Mechanics and Physics of Solids, vol. 82, pp. 186–217, 2015.
  95. J. Li and Y.-T. Chen, Computational partial differential equations using MATLAB®. Crc Press, 2019.
  96. E. Garcia, Solution to the instationary Maxwell equations with charges in non-convex domains. PhD thesis, PhD thesis, Université Paris VI, France, 2002.
  97. E. Jamelot, “Solution to maxwell equations with continuous galerkin finite elements,” Ph. D. Thesis, Ecole Polytechnique, Palaiseau, France, 2005.
  98. P. Ciarlet and E. Jamelot, “Continuous galerkin methods for solving the time-dependent maxwell equations in 3d geometries,” Journal of Computational Physics, vol. 226, no. 1, pp. 1122–1135, 2007.
  99. M. Asadzadeh and L. Beilina, “A stabilized p1 domain decomposition finite element method for time harmonic maxwell’s equations,” Mathematics and Computers in Simulation, vol. 204, pp. 556–574, 2023.
  100. G. Meunier, “The finite element method for electromagnetic modeling,” 2010.
  101. J. R. Cardoso, Electromagnetics through the finite element method: A simplified approach using Maxwell’s equations. Crc Press, 2016.
  102. J. P. A. Bastos and N. Sadowski, Electromagnetic modeling by finite element methods. CRC press, 2003.
  103. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, “The fenics project version 1.5,” Archive of Numerical Software, vol. 3, no. 100, 2015.
  104. Springer, 2012.
  105. Q. Yue, Q. Wang, W. Zhou, T. Rabczuk, X. Zhuang, B. Liu, and X. Chang, “An efficient adaptive length scale insensitive phase-field model for three-dimensional fracture of solids using trilinear multi-node elements,” International Journal of Mechanical Sciences, vol. 253, p. 108351, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.