Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Recurrent Event Memories for Streaming Data (2307.15694v1)

Published 28 Jul 2023 in cs.LG

Abstract: In this paper, we propose a new event memory architecture (MemNet) for recurrent neural networks, which is universal for different types of time series data such as scalar, multivariate or symbolic. Unlike other external neural memory architectures, it stores key-value pairs, which separate the information for addressing and for content to improve the representation, as in the digital archetype. Moreover, the key-value pairs also avoid the compromise between memory depth and resolution that applies to memories constructed by the model state. One of the MemNet key characteristics is that it requires only linear adaptive mapping functions while implementing a nonlinear operation on the input data. MemNet architecture can be applied without modifications to scalar time series, logic operators on strings, and also to natural language processing, providing state-of-the-art results in all application domains such as the chaotic time series, the symbolic operation tasks, and the question-answering tasks (bAbI). Finally, controlled by five linear layers, MemNet requires a much smaller number of training parameters than other external memory networks as well as the transformer network. The space complexity of MemNet equals a single self-attention layer. It greatly improves the efficiency of the attention mechanism and opens the door for IoT applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.