Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Relative Entropy and Mutual Information in Gaussian Statistical Field Theory (2307.15548v2)

Published 28 Jul 2023 in cond-mat.stat-mech, math-ph, and math.MP

Abstract: Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on $d$, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in $\mathbb{R}d$ is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of "touching" regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.