2000 character limit reached
Stability of step size control based on a posteriori error estimates (2307.12677v3)
Published 24 Jul 2023 in math.NA and cs.NA
Abstract: A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step size control stability when combined with explicit Runge-Kutta methods and demonstrate that a standard I controller is unstable while more advanced PI and PID controllers can be designed to be stable. We compare the stability properties of residual-based estimators and classical error estimators based on an embedded Runge-Kutta method both analytically and in numerical experiments.
- “Goal-oriented adaptive finite element methods with optimal computational complexity” In Numerische Mathematik 153.1, 2023, pp. 111–140 DOI: 10.1007/s00211-022-01334-8
- Thomas Brooke Benjamin, Jerry Lloyd Bona and John Joseph Mahony “Model equations for long waves in nonlinear dispersive systems” In Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 272.1220 The Royal Society London, 1972, pp. 47–78 DOI: 10.1098/rsta.1972.0032
- “Julia: A Fresh Approach to Numerical Computing” In SIAM Review 59.1 SIAM, 2017, pp. 65–98 DOI: 10.1137/141000671
- P Bogacki and Lawrence F Shampine “An efficient Runge-Kutta (4,5) pair” In Computers & Mathematics with Applications 32.6 Elsevier, 1996, pp. 15–28 DOI: 10.1016/0898-1221(96)00141-1
- Przemyslaw Bogacki and Lawrence F Shampine “A 3(2) pair of Runge-Kutta formulas” In Applied Mathematics Letters 2.4 Elsevier, 1989, pp. 321–325 DOI: 10.1016/0893-9659(89)90079-7
- John Charles Butcher “Numerical Methods for Ordinary Differential Equations” Chichester: John Wiley & Sons Ltd, 2016 DOI: 10.1002/9781119121534
- “Plots.jl — a user extendable plotting API for the Julia programming language” In Journal of Open Research Software, 2023 DOI: 10.5334/jors.431
- Richard Courant, Kurt O Friedrichs and Hans Lewy “On the partial difference equations of mathematical physics” In IBM Journal of Research and Development 11.2 IBM, 1967, pp. 215–234
- “A posteriori analysis of fully discrete method of lines discontinuous Galerkin schemes for systems of conservation laws” In SIAM Journal on Numerical Analysis 54.6 SIAM, 2016, pp. 3523–3549 DOI: 10.1137/15M1046265
- John R Dormand and Peter J Prince “A family of embedded Runge-Kutta formulae” In Journal of Computational and Applied Mathematics 6.1 Elsevier, 1980, pp. 19–26 DOI: 10.1016/0771-050X(80)90013-3
- Sever Silvestru Dragomir “Some Gronwall type inequalities and applications” Hauppauge, NY: Nova Science Publishers, 2003
- Travis C Fisher and Mark H Carpenter “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains” In Journal of Computational Physics 252 Elsevier, 2013, pp. 518–557 DOI: 10.1016/j.jcp.2013.06.014
- Matteo Frigo and Steven G Johnson “The design and implementation of FFTW3” In Proceedings of the IEEE 93.2 IEEE, 2005, pp. 216–231 DOI: 10.1109/JPROC.2004.840301
- Gregor Josef Gassner, Andrew Ross Winters and David A Kopriva “Split Form Nodal Discontinuous Galerkin Schemes with Summation-By-Parts Property for the Compressible Euler Equations” In Journal of Computational Physics 327 Elsevier, 2016, pp. 39–66 DOI: 10.1016/j.jcp.2016.09.013
- Kjell Gustafsson “Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods” In ACM Transactions on Mathematical Software (TOMS) 17.4 ACM, 1991, pp. 533–554 DOI: 10.1145/210232.210242
- Kjell Gustafsson, Michael Lundh and Gustaf Söderlind “A PI stepsize control for the numerical solution of ordinary differential equations” In BIT Numerical Mathematics 28.2 Springer, 1988, pp. 270–287 DOI: 10.1007/BF01934091
- Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner “Solving Ordinary Differential Equations I: Nonstiff Problems” 8, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2008 DOI: 10.1007/978-3-540-78862-1
- “Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems” 14, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2010 DOI: 10.1007/978-3-642-05221-7
- George Hall “Equilibrium states of Runge Kutta schemes” In ACM Transactions on Mathematical Software (TOMS) 11.3 ACM New York, NY, USA, 1985, pp. 289–301 DOI: 10.1145/214408.214424
- George Hall “Equilibrium states of Runge-Kutta schemes: part II” In ACM Transactions on Mathematical Software (TOMS) 12.3 ACM New York, NY, USA, 1986, pp. 183–192 DOI: 10.1145/7921.7922
- George Hall and Desmond J Higham “Analysis of stepsize selection schemes for Runge-Kutta codes” In IMA Journal of Numerical Analysis 8.3 Oxford University Press, 1988, pp. 305–310 DOI: 10.1093/imanum/8.3.305
- Jan S Hesthaven and Tim Warburton “Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications” 54, Texts in Applied Mathematics New York: Springer Science & Business Media, 2007 DOI: 10.1007/978-0-387-72067-8
- Desmond J Higham “Global error versus tolerance for explicit Runge-Kutta methods” In IMA Journal of Numerical Analysis 11.4 Oxford University Press, 1991, pp. 457–480 DOI: 10.1093/imanum/11.4.457
- Desmond J Higham and George Hall “Embedded Runge-Kutta formulae with stable equilibrium states” In Journal of computational and applied mathematics 29.1 Elsevier, 1990, pp. 25–33 DOI: 10.1016/0377-0427(90)90192-3
- Steven G. Johnson “QuadGK.jl: Gauss–Kronrod integration in Julia”, https://github.com/JuliaMath/QuadGK.jl, 2013
- Christopher A Kennedy, Mark H Carpenter and R Michael Lewis “Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations” In Applied Numerical Mathematics 35.3 Elsevier, 2000, pp. 177–219 DOI: 10.1016/S0168-9274(99)00141-5
- David A Kopriva “Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers” New York: Springer Science & Business Media, 2009 DOI: 10.1007/978-90-481-2261-5
- “Design and convergence analysis for an adaptive discretization of the heat equation” In IMA Journal of Numerical Analysis 32.4, 2012, pp. 1375–1403 DOI: 10.1093/imanum/drr026
- Fred T Krogh “On testing a subroutine for the numerical integration of ordinary differential equations” In Journal of the ACM (JACM) 20.4 ACM New York, NY, USA, 1973, pp. 545–562 DOI: 10.1145/321784.321786
- Omar Lakkis, Charalambos Makridakis and Tristan Pryer “A comparison of duality and energy a posteriori estimates for L∞(0,T;L2(Ω))subscriptL0𝑇subscriptL2Ω\mathrm{L}_{\infty}(0,T;\mathrm{L}_{2}(\varOmega))roman_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( 0 , italic_T ; roman_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_Ω ) ) in parabolic problems” In Math. Comput. 84.294, 2015, pp. 1537–1569 DOI: 10.1090/S0025-5718-2014-02912-8
- Charalambos Makridakis “Space and time reconstructions in a posteriori analysis of evolution problems” In ESAIM, Proc. 21, 2007, pp. 31–44 DOI: 10.1051/proc:072104
- Charalambos Makridakis and Ricardo H. Nochetto “A posteriori error analysis for higher order dissipative methods for evolution problems” In Numerische Mathematik 104.4, 2006, pp. 489–514 DOI: 10.1007/s00211-006-0013-6
- “DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia” In Journal of Open Research Software 5.1 Ubiquity Press, 2017, pp. 15 DOI: 10.5334/jors.151
- Hendrik Ranocha “Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations” In Journal of Scientific Computing 76.1 Springer, 2018, pp. 216–242 DOI: 10.1007/s10915-017-0618-1
- Hendrik Ranocha “Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators” In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 134, Lecture Notes in Computational Science and Engineering Cham: Springer, 2020, pp. 525–535 DOI: 10.1007/978-3-030-39647-3_42
- Hendrik Ranocha “SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties” In Journal of Open Source Software 6.64 The Open Journal, 2021, pp. 3454 DOI: 10.21105/joss.03454
- “Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics” In Communications on Applied Mathematics and Computation 4, 2021, pp. 1191–1228 DOI: 10.1007/s42967-021-00159-w
- Hendrik Ranocha and Gregor J Gassner “Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes” In Communications on Applied Mathematics and Computation, 2021 DOI: 10.1007/s42967-021-00148-z
- “Reproducibility repository for "Stability of step size control based on a posteriori error estimates"”, https://github.com/ranocha/2023_RK_error_estimate, 2023 DOI: 10.5281/zenodo.8177157
- Hendrik Ranocha, Dimitrios Mitsotakis and David I Ketcheson “A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations” In Communications in Computational Physics 29.4 Global Science Press, 2021, pp. 979–1029 DOI: 10.4208/cicp.OA-2020-0119
- “Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws” In ACM Transactions on Mathematical Software 49, 2023 DOI: 10.1145/3625559
- “Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing” In Proceedings of the JuliaCon Conferences 1.1 The Open Journal, 2022, pp. 77 DOI: 10.21105/jcon.00077
- “On error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics” In Communications on Applied Mathematics and Computation, 2023 DOI: 10.1007/s42967-023-00264-y
- J. Revels, M. Lubin and T. Papamarkou “Forward-Mode Automatic Differentiation in Julia”, 2016 DOI: 10.48550/arXiv.1607.07892
- “A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics” In Journal of Computational Physics 442 Elsevier, 2021, pp. 110467 DOI: 10.1016/j.jcp.2021.110467
- Gustaf Söderlind “Automatic control and adaptive time-stepping” In Numerical Algorithms 31.1-4 Springer, 2002, pp. 281–310 DOI: 10.1023/A:1021160023092
- Gustaf Söderlind “Time-step selection algorithms: Adaptivity, control, and signal processing” In Applied Numerical Mathematics 56.3-4 Elsevier, 2006, pp. 488–502 DOI: 10.1016/j.apnum.2005.04.026
- “Adaptive time-stepping and computational stability” In Journal of Computational and Applied Mathematics 185.2 Elsevier, 2006, pp. 225–243 DOI: 10.1016/j.cam.2005.03.008
- Wolfram Research, Inc. “Mathematica”, 2019 URL: https://www.wolfram.com