Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of step size control based on a posteriori error estimates (2307.12677v3)

Published 24 Jul 2023 in math.NA and cs.NA

Abstract: A posteriori error estimates based on residuals can be used for reliable error control of numerical methods. Here, we consider them in the context of ordinary differential equations and Runge-Kutta methods. In particular, we take the approach of Dedner & Giesselmann (2016) and investigate it when used to select the time step size. We focus on step size control stability when combined with explicit Runge-Kutta methods and demonstrate that a standard I controller is unstable while more advanced PI and PID controllers can be designed to be stable. We compare the stability properties of residual-based estimators and classical error estimators based on an embedded Runge-Kutta method both analytically and in numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. “Goal-oriented adaptive finite element methods with optimal computational complexity” In Numerische Mathematik 153.1, 2023, pp. 111–140 DOI: 10.1007/s00211-022-01334-8
  2. Thomas Brooke Benjamin, Jerry Lloyd Bona and John Joseph Mahony “Model equations for long waves in nonlinear dispersive systems” In Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 272.1220 The Royal Society London, 1972, pp. 47–78 DOI: 10.1098/rsta.1972.0032
  3. “Julia: A Fresh Approach to Numerical Computing” In SIAM Review 59.1 SIAM, 2017, pp. 65–98 DOI: 10.1137/141000671
  4. P Bogacki and Lawrence F Shampine “An efficient Runge-Kutta (4,5) pair” In Computers & Mathematics with Applications 32.6 Elsevier, 1996, pp. 15–28 DOI: 10.1016/0898-1221(96)00141-1
  5. Przemyslaw Bogacki and Lawrence F Shampine “A 3(2) pair of Runge-Kutta formulas” In Applied Mathematics Letters 2.4 Elsevier, 1989, pp. 321–325 DOI: 10.1016/0893-9659(89)90079-7
  6. John Charles Butcher “Numerical Methods for Ordinary Differential Equations” Chichester: John Wiley & Sons Ltd, 2016 DOI: 10.1002/9781119121534
  7. “Plots.jl — a user extendable plotting API for the Julia programming language” In Journal of Open Research Software, 2023 DOI: 10.5334/jors.431
  8. Richard Courant, Kurt O Friedrichs and Hans Lewy “On the partial difference equations of mathematical physics” In IBM Journal of Research and Development 11.2 IBM, 1967, pp. 215–234
  9. “A posteriori analysis of fully discrete method of lines discontinuous Galerkin schemes for systems of conservation laws” In SIAM Journal on Numerical Analysis 54.6 SIAM, 2016, pp. 3523–3549 DOI: 10.1137/15M1046265
  10. John R Dormand and Peter J Prince “A family of embedded Runge-Kutta formulae” In Journal of Computational and Applied Mathematics 6.1 Elsevier, 1980, pp. 19–26 DOI: 10.1016/0771-050X(80)90013-3
  11. Sever Silvestru Dragomir “Some Gronwall type inequalities and applications” Hauppauge, NY: Nova Science Publishers, 2003
  12. Travis C Fisher and Mark H Carpenter “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains” In Journal of Computational Physics 252 Elsevier, 2013, pp. 518–557 DOI: 10.1016/j.jcp.2013.06.014
  13. Matteo Frigo and Steven G Johnson “The design and implementation of FFTW3” In Proceedings of the IEEE 93.2 IEEE, 2005, pp. 216–231 DOI: 10.1109/JPROC.2004.840301
  14. Gregor Josef Gassner, Andrew Ross Winters and David A Kopriva “Split Form Nodal Discontinuous Galerkin Schemes with Summation-By-Parts Property for the Compressible Euler Equations” In Journal of Computational Physics 327 Elsevier, 2016, pp. 39–66 DOI: 10.1016/j.jcp.2016.09.013
  15. Kjell Gustafsson “Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods” In ACM Transactions on Mathematical Software (TOMS) 17.4 ACM, 1991, pp. 533–554 DOI: 10.1145/210232.210242
  16. Kjell Gustafsson, Michael Lundh and Gustaf Söderlind “A PI stepsize control for the numerical solution of ordinary differential equations” In BIT Numerical Mathematics 28.2 Springer, 1988, pp. 270–287 DOI: 10.1007/BF01934091
  17. Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner “Solving Ordinary Differential Equations I: Nonstiff Problems” 8, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2008 DOI: 10.1007/978-3-540-78862-1
  18. “Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems” 14, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2010 DOI: 10.1007/978-3-642-05221-7
  19. George Hall “Equilibrium states of Runge Kutta schemes” In ACM Transactions on Mathematical Software (TOMS) 11.3 ACM New York, NY, USA, 1985, pp. 289–301 DOI: 10.1145/214408.214424
  20. George Hall “Equilibrium states of Runge-Kutta schemes: part II” In ACM Transactions on Mathematical Software (TOMS) 12.3 ACM New York, NY, USA, 1986, pp. 183–192 DOI: 10.1145/7921.7922
  21. George Hall and Desmond J Higham “Analysis of stepsize selection schemes for Runge-Kutta codes” In IMA Journal of Numerical Analysis 8.3 Oxford University Press, 1988, pp. 305–310 DOI: 10.1093/imanum/8.3.305
  22. Jan S Hesthaven and Tim Warburton “Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications” 54, Texts in Applied Mathematics New York: Springer Science & Business Media, 2007 DOI: 10.1007/978-0-387-72067-8
  23. Desmond J Higham “Global error versus tolerance for explicit Runge-Kutta methods” In IMA Journal of Numerical Analysis 11.4 Oxford University Press, 1991, pp. 457–480 DOI: 10.1093/imanum/11.4.457
  24. Desmond J Higham and George Hall “Embedded Runge-Kutta formulae with stable equilibrium states” In Journal of computational and applied mathematics 29.1 Elsevier, 1990, pp. 25–33 DOI: 10.1016/0377-0427(90)90192-3
  25. Steven G. Johnson “QuadGK.jl: Gauss–Kronrod integration in Julia”, https://github.com/JuliaMath/QuadGK.jl, 2013
  26. Christopher A Kennedy, Mark H Carpenter and R Michael Lewis “Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations” In Applied Numerical Mathematics 35.3 Elsevier, 2000, pp. 177–219 DOI: 10.1016/S0168-9274(99)00141-5
  27. David A Kopriva “Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers” New York: Springer Science & Business Media, 2009 DOI: 10.1007/978-90-481-2261-5
  28. “Design and convergence analysis for an adaptive discretization of the heat equation” In IMA Journal of Numerical Analysis 32.4, 2012, pp. 1375–1403 DOI: 10.1093/imanum/drr026
  29. Fred T Krogh “On testing a subroutine for the numerical integration of ordinary differential equations” In Journal of the ACM (JACM) 20.4 ACM New York, NY, USA, 1973, pp. 545–562 DOI: 10.1145/321784.321786
  30. Omar Lakkis, Charalambos Makridakis and Tristan Pryer “A comparison of duality and energy a posteriori estimates for L∞⁢(0,T;L2⁢(Ω))subscriptL0𝑇subscriptL2Ω\mathrm{L}_{\infty}(0,T;\mathrm{L}_{2}(\varOmega))roman_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ( 0 , italic_T ; roman_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( roman_Ω ) ) in parabolic problems” In Math. Comput. 84.294, 2015, pp. 1537–1569 DOI: 10.1090/S0025-5718-2014-02912-8
  31. Charalambos Makridakis “Space and time reconstructions in a posteriori analysis of evolution problems” In ESAIM, Proc. 21, 2007, pp. 31–44 DOI: 10.1051/proc:072104
  32. Charalambos Makridakis and Ricardo H. Nochetto “A posteriori error analysis for higher order dissipative methods for evolution problems” In Numerische Mathematik 104.4, 2006, pp. 489–514 DOI: 10.1007/s00211-006-0013-6
  33. “DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia” In Journal of Open Research Software 5.1 Ubiquity Press, 2017, pp. 15 DOI: 10.5334/jors.151
  34. Hendrik Ranocha “Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations” In Journal of Scientific Computing 76.1 Springer, 2018, pp. 216–242 DOI: 10.1007/s10915-017-0618-1
  35. Hendrik Ranocha “Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators” In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 134, Lecture Notes in Computational Science and Engineering Cham: Springer, 2020, pp. 525–535 DOI: 10.1007/978-3-030-39647-3_42
  36. Hendrik Ranocha “SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties” In Journal of Open Source Software 6.64 The Open Journal, 2021, pp. 3454 DOI: 10.21105/joss.03454
  37. “Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics” In Communications on Applied Mathematics and Computation 4, 2021, pp. 1191–1228 DOI: 10.1007/s42967-021-00159-w
  38. Hendrik Ranocha and Gregor J Gassner “Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes” In Communications on Applied Mathematics and Computation, 2021 DOI: 10.1007/s42967-021-00148-z
  39. “Reproducibility repository for "Stability of step size control based on a posteriori error estimates"”, https://github.com/ranocha/2023_RK_error_estimate, 2023 DOI: 10.5281/zenodo.8177157
  40. Hendrik Ranocha, Dimitrios Mitsotakis and David I Ketcheson “A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations” In Communications in Computational Physics 29.4 Global Science Press, 2021, pp. 979–1029 DOI: 10.4208/cicp.OA-2020-0119
  41. “Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws” In ACM Transactions on Mathematical Software 49, 2023 DOI: 10.1145/3625559
  42. “Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing” In Proceedings of the JuliaCon Conferences 1.1 The Open Journal, 2022, pp. 77 DOI: 10.21105/jcon.00077
  43. “On error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics” In Communications on Applied Mathematics and Computation, 2023 DOI: 10.1007/s42967-023-00264-y
  44. J. Revels, M. Lubin and T. Papamarkou “Forward-Mode Automatic Differentiation in Julia”, 2016 DOI: 10.48550/arXiv.1607.07892
  45. “A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics” In Journal of Computational Physics 442 Elsevier, 2021, pp. 110467 DOI: 10.1016/j.jcp.2021.110467
  46. Gustaf Söderlind “Automatic control and adaptive time-stepping” In Numerical Algorithms 31.1-4 Springer, 2002, pp. 281–310 DOI: 10.1023/A:1021160023092
  47. Gustaf Söderlind “Time-step selection algorithms: Adaptivity, control, and signal processing” In Applied Numerical Mathematics 56.3-4 Elsevier, 2006, pp. 488–502 DOI: 10.1016/j.apnum.2005.04.026
  48. “Adaptive time-stepping and computational stability” In Journal of Computational and Applied Mathematics 185.2 Elsevier, 2006, pp. 225–243 DOI: 10.1016/j.cam.2005.03.008
  49. Wolfram Research, Inc. “Mathematica”, 2019 URL: https://www.wolfram.com
Citations (3)

Summary

We haven't generated a summary for this paper yet.