2000 character limit reached
Step size control for explicit relaxation Runge-Kutta methods preserving invariants (2311.14050v1)
Published 23 Nov 2023 in math.NA and cs.NA
Abstract: Many time-dependent differential equations are equipped with invariants. Preserving such invariants under discretization can be important, e.g., to improve the qualitative and quantitative properties of numerical solutions. Recently, relaxation methods have been proposed as small modifications of standard time integration schemes guaranteeing the correct evolution of functionals of the solution. Here, we investigate how to combine these relaxation techniques with efficient step size control mechanisms based on local error estimates for explicit Runge-Kutta methods. We demonstrate our results in several numerical experiments including ordinary and partial differential equations.
- “Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes” In The SMAI Journal of Computational Mathematics 8, 2022, pp. 125–160 DOI: 10.5802/smai-jcm.82
- Rasha Al Jahdali, Lisandro Dalcin and Matteo Parsani “On the performance of relaxation and adaptive explicit Runge-Kutta schemes for high-order compressible flow simulations” In Journal of Computational Physics Elsevier, 2022 DOI: 10.1016/j.jcp.2022.111333
- GE Alefeld, Florian A Potra and Yixun Shi “Algorithm 748: Enclosing Zeros of Continuous Functions” In ACM Transactions on Mathematical Software (TOMS) 21.3 ACM New York, NY, USA, 1995, pp. 327–344 DOI: 10.1145/210089.210111
- Thomas Brooke Benjamin, Jerry Lloyd Bona and John Joseph Mahony “Model equations for long waves in nonlinear dispersive systems” In Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 272.1220 The Royal Society London, 1972, pp. 47–78 DOI: 10.1098/rsta.1972.0032
- “Julia: A Fresh Approach to Numerical Computing” In SIAM Review 59.1 SIAM, 2017, pp. 65–98 DOI: 10.1137/141000671
- Abhijit Biswas and David I Ketcheson “Accurate Solution of the Nonlinear Schrödinger Equation via Conservative Multiple-Relaxation ImEx Methods”, 2023 arXiv:2309.02324 [math.NA]
- Abhijit Biswas and David I Ketcheson “Multiple relaxation Runge-Kutta methods for conservative dynamical systems”, 2023 arXiv:2302.05235 [math.NA]
- “Reproducibility repository for "Step size control for explicit relaxation Runge-Kutta methods preserving invariants"”, https://github.com/ranocha/2023_FSAL_relaxation, 2023 DOI: 10.5281/zenodo.10201246
- Przemyslaw Bogacki and Lawrence F Shampine “A 3(2) pair of Runge-Kutta formulas” In Applied Mathematics Letters 2.4 Elsevier, 1989, pp. 321–325 DOI: 10.1016/0893-9659(89)90079-7
- John Charles Butcher “Numerical Methods for Ordinary Differential Equations” Chichester: John Wiley & Sons Ltd, 2016 DOI: 10.1002/9781119121534
- “On the Preservation of Invariants by Explicit Runge-Kutta Methods” In SIAM Journal on Scientific Computing 28.3 SIAM, 2006, pp. 868–885 DOI: 10.1137/04061979X
- Kees Dekker and Jan G Verwer “Stability of Runge-Kutta methods for stiff nonlinear differential equations” 2, CWI Monographs Amsterdam: North-Holland, 1984
- John R Dormand and Peter J Prince “A family of embedded Runge-Kutta formulae” In Journal of Computational and Applied Mathematics 6.1 Elsevier, 1980, pp. 19–26 DOI: 10.1016/0771-050X(80)90013-3
- Matteo Frigo and Steven G Johnson “The design and implementation of FFTW3” In Proceedings of the IEEE 93.2 IEEE, 2005, pp. 216–231 DOI: 10.1109/JPROC.2004.840301
- “High order entropy preserving ADER-DG scheme” In Applied Mathematics and Computation 440.127644 Elsevier, 2023 DOI: 10.1016/j.amc.2022.127644
- “Enabling new flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation solvers” In ACM Transactions on Mathematical Software (TOMS) ACM, 2022 DOI: 10.1145/3539801
- Kjell Gustafsson, Michael Lundh and Gustaf Söderlind “A PI stepsize control for the numerical solution of ordinary differential equations” In BIT Numerical Mathematics 28.2 Springer, 1988, pp. 270–287 DOI: 10.1007/BF01934091
- Ernst Hairer, Christian Lubich and Gerhard Wanner “Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations” 31, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2006 DOI: 10.1007/3-540-30666-8
- Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner “Solving Ordinary Differential Equations I: Nonstiff Problems” 8, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2008 DOI: 10.1007/978-3-540-78862-1
- “Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems” 14, Springer Series in Computational Mathematics Berlin Heidelberg: Springer-Verlag, 2010 DOI: 10.1007/978-3-642-05221-7
- George Hall “Equilibrium states of Runge Kutta schemes” In ACM Transactions on Mathematical Software (TOMS) 11.3 ACM, 1985, pp. 289–301 DOI: 10.1145/214408.214424
- George Hall “Equilibrium states of Runge-Kutta schemes: part II” In ACM Transactions on Mathematical Software (TOMS) 12.3 ACM, 1986, pp. 183–192 DOI: 10.1145/7921.7922
- George Hall and Desmond J Higham “Analysis of stepsize selection schemes for Runge-Kutta codes” In IMA Journal of Numerical Analysis 8.3 Oxford University Press, 1988, pp. 305–310 DOI: 10.1093/imanum/8.3.305
- Desmond J Higham and George Hall “Embedded Runge-Kutta formulae with stable equilibrium states” In Journal of Computational and Applied Mathematics 29.1 Elsevier, 1990, pp. 25–33 DOI: 10.1016/0377-0427(90)90192-3
- “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers” In ACM Transactions on Mathematical Software (TOMS) 31.3 ACM, 2005, pp. 363–396 DOI: 10.1145/1089014.1089020
- J. D. Hunter “Matplotlib: A 2D graphics environment” In Computing in Science & Engineering 9.3 IEEE Computer Society, 2007, pp. 90–95 DOI: 10.1109/MCSE.2007.55
- Shinhoo Kang and Emil M Constantinescu “Entropy-Preserving and Entropy-Stable Relaxation IMEX and Multirate Time-Stepping Methods” In Journal of Scientific Computing 93, 2022, pp. 23 DOI: 10.1007/s10915-022-01982-w
- Christopher A Kennedy and Mark H Carpenter “Additive Runge-Kutta schemes for convection–diffusion–reaction equations” In Applied Numerical Mathematics 44.1-2 Elsevier, 2003, pp. 139–181 DOI: 10.1016/S0168-9274(02)00138-1
- David I Ketcheson “Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms” In SIAM Journal on Numerical Analysis 57.6 Society for IndustrialApplied Mathematics, 2019, pp. 2850–2870 DOI: 10.1137/19M1263662
- David I Ketcheson and Hendrik Ranocha “Computing with B-series” In ACM Transactions on Mathematical Software 49.2, 2023 DOI: 10.1145/3573384
- David A Kopriva “Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers” New York: Springer Science & Business Media, 2009 DOI: 10.1007/978-90-481-2261-5
- Wilhelm Kutta “Beitrag zur näherungsweisen Integration totaler Differentialgleichungen” In Zeitschrift für Mathematik und Physik 46, 1901, pp. 435–453
- “A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations” In ESAIM: Mathematical Modelling and Numerical Analysis 55.6 EDP Sciences, 2021, pp. 2567–2608 DOI: 10.1051/m2an/2021065
- Dongfang Li, Xiaoxi Li and Zhimin Zhang “Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications to PDEs” In Mathematics of Computation American Mathematical Society, 2022 DOI: 10.1090/mcom/3766
- Dongfang Li, Xiaoxi Li and Zhimin Zhang “Linearly implicit and high-order energy-preserving relaxation schemes for highly oscillatory Hamiltonian systems” In Journal of Computational Physics Elsevier, 2023, pp. 111925 DOI: 10.1016/j.jcp.2023.111925
- Viktor Linders, Hendrik Ranocha and Philipp Birken “Resolving Entropy Growth from Iterative Methods” In BIT Numerical Mathematics, 2023 DOI: 10.1007/s10543-023-00992-w
- “A conservative fully-discrete numerical method for the regularized shallow water wave equations” In SIAM Journal on Scientific Computing 42, 2021 DOI: 10.1137/20M1364606
- Peter J Olver “Euler operators and conservation laws of the BBM equation” In Mathematical Proceedings of the Cambridge Philosophical Society 85.1, 1979, pp. 143–160 Cambridge University Press DOI: 10.1017/S0305004100055572
- “Energy-conserving explicit and implicit time integration methods for the multi-dimensional Hermite-DG discretization of the Vlasov-Maxwell equations”, 2021 arXiv:2110.11511 [math.NA]
- “DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia” In Journal of Open Research Software 5.1 Ubiquity Press, 2017, pp. 15 DOI: 10.5334/jors.151
- Hendrik Ranocha “On Strong Stability of Explicit Runge-Kutta Methods for Nonlinear Semibounded Operators” In IMA Journal of Numerical Analysis 41.1 Oxford University Press, 2021, pp. 654–682 DOI: 10.1093/imanum/drz070
- Hendrik Ranocha “SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties” In Journal of Open Source Software 6.64 The Open Journal, 2021, pp. 3454 DOI: 10.21105/joss.03454
- Hendrik Ranocha, Lisandro Dalcin and Matteo Parsani “Fully-Discrete Explicit Locally Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations” In Computers and Mathematics with Applications 80.5 Elsevier, 2020, pp. 1343–1359 DOI: 10.1016/j.camwa.2020.06.016
- “Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics” In Communications on Applied Mathematics and Computation 4, 2021, pp. 1191–1228 DOI: 10.1007/s42967-021-00159-w
- “Stability of step size control based on a posteriori error estimates”, 2023 DOI: 10.48550/arXiv.2307.12677
- Hendrik Ranocha and David I Ketcheson “Relaxation Runge-Kutta Methods for Hamiltonian Problems” In Journal of Scientific Computing 84.1 Springer Nature, 2020 DOI: 10.1007/s10915-020-01277-y
- Hendrik Ranocha, Lajos Lóczi and David I Ketcheson “General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes” In Numerische Mathematik 146 Springer Nature, 2020, pp. 875–906 DOI: 10.1007/s00211-020-01158-4
- Hendrik Ranocha, Manuel Luna and David I Ketcheson “On the Rate of Error Growth in Time for Numerical Solutions of Nonlinear Dispersive Wave Equations” In Partial Differential Equations and Applications 2.6, 2021, pp. 76 DOI: 10.1007/s42985-021-00126-3
- Hendrik Ranocha, Dimitrios Mitsotakis and David I Ketcheson “A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations” In Communications in Computational Physics 29.4 Global Science Press, 2021, pp. 979–1029 DOI: 10.4208/cicp.OA-2020-0119
- “Relaxation Runge-Kutta Methods: Fully-Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations” In SIAM Journal on Scientific Computing 42.2 Society for IndustrialApplied Mathematics, 2020, pp. A612–A638 DOI: 10.1137/19M1263480
- “Multiderivative time integration methods preserving nonlinear functionals via relaxation”, 2023 DOI: 10.48550/arXiv.2311.03883
- Hendrik Ranocha, Jochen Schütz and Eleni Theodosiou “Functional-preserving predictor-corrector multiderivative schemes” In Proceedings in Applied Mathematics and Mechanics, 2023 DOI: 10.1002/pamm.202300025
- “On error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics” In Communications on Applied Mathematics and Computation, 2023 DOI: 10.1007/s42967-023-00264-y
- “ARKODE: A flexible IVP solver infrastructure for one-step methods” In ACM Transactions on Mathematical Software 49.2, 2023, pp. 1–26 DOI: 10.1145/3594632
- “Performance analysis of relaxation Runge-Kutta methods” In The International Journal of High Performance Computing Applications SAGE, 2022 DOI: 10.1177/10943420221085947
- Jesus Maria Sanz-Serna “An explicit finite-difference scheme with exact conservation properties” In Journal of Computational Physics 47.2 Elsevier, 1982, pp. 199–210 DOI: 10.1016/0021-9991(82)90074-2
- Jesus Maria Sanz-Serna and Manuel P Calvo “Numerical Hamiltonian Problems” 7, Applied Mathematics and Mathematical Computation London: Chapman & Hall, 1994
- Gustaf Söderlind “Time-step selection algorithms: Adaptivity, control, and signal processing” In Applied Numerical Mathematics 56.3-4 Elsevier, 2006, pp. 488–502 DOI: 10.1016/j.apnum.2005.04.026
- “Adaptive time-stepping and computational stability” In Journal of Computational and Applied Mathematics 185.2 Elsevier, 2006, pp. 225–243 DOI: 10.1016/j.cam.2005.03.008
- James H Verner “Numerically optimal Runge-Kutta pairs with interpolants” In Numerical Algorithms 53.2-3 Springer, 2010, pp. 383–396 DOI: 10.1007/s11075-009-9290-3
- John Verzani “Roots.jl: Root finding functions for Julia”, https://github.com/JuliaMath/Roots.jl, 2020
- “Entropy stable discontinuous Galerkin methods for balance laws in non-conservative form: Applications to the Euler equations with gravity” In Journal of Computational Physics 468 Elsevier, 2022, pp. 111507 DOI: 10.1016/j.jcp.2022.111507
- “Entropy-stable Galerkin difference discretization on unstructured grids” In AIAA AVIATION 2020 FORUM, 2020, pp. 3033 DOI: 10.2514/6.2020-3033
- “Highly efficient invariant-conserving explicit Runge-Kutta schemes for nonlinear Hamiltonian differential equations” In Journal of Computational Physics Elsevier, 2020, pp. 109598 DOI: 10.1016/j.jcp.2020.109598