Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stochastic pole expansion method (2307.11324v1)

Published 21 Jul 2023 in cond-mat.str-el and physics.comp-ph

Abstract: In this paper, we propose a new analytic continuation method to extract real frequency spectral functions from imaginary frequency Green's functions of quantum many-body systems. This method is based on the pole representation of Matsubara Green's function and a stochastic sampling procedure is utilized to optimize the amplitudes and locations of poles. In order to capture narrow peaks and sharp band edges in the spectral functions, a constrained sampling algorithm and a self-adaptive sampling algorithm are developed. To demonstrate the usefulness and performance of the new method, we at first apply it to study the spectral functions of representative fermionic and bosonic correlators. Then we employ this method to tackle the analytic continuation problems of matrix-valued Green's functions. The synthetic Green's functions, as well as realistic correlation functions from finite temperature quantum many-body calculations, are used as input. The benchmark results demonstrate that this method is capable of reproducing most of the key characteristics in the spectral functions. The sharp, smooth, and multi-peak features in both low-frequency and high-frequency regions of spectral functions could be accurately resolved, which overcomes one of the main limitations of the traditional maximum entropy method. More importantly, it exhibits excellent robustness with respect to noisy and incomplete input data. The causality of spectral function is always satisfied even in the presence of sizable noises. As a byproduct, this method could derive a fitting formula for the Matsubara data, which provides a compact approximation to the many-body Green's functions. Hence, we expect that this new method could become a pivotal workhorse for numerically analytic continuation and be broadly useful in many applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube