Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb-Pb and Xe-Xe collisions (2307.11116v2)

Published 20 Jul 2023 in nucl-ex and hep-ex

Abstract: The pseudorapidity dependence of elliptic ($v_2$), triangular ($v_3$), and quadrangular ($v_4$) flow coefficients of charged particles measured in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV and in Xe-Xe collisions at $\sqrt{s_{\rm NN}}=5.44$ TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range $-3.5 < \eta < 5$ for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient $v_2$ calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to $3+1$ dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. BRAHMS Collaboration, I. Arsene et al., “Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1–27, arXiv:nucl-ex/0410020.
  2. PHOBOS Collaboration, B. B. Back et al., “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl-ex/0410022.
  3. STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl-ex/0501009.
  4. PHENIX Collaboration, K. Adcox et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl-ex/0410003.
  5. ALICE Collaboration, “The ALICE experiment – A journey through QCD”, arXiv:2211.04384 [nucl-ex].
  6. J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D 46 (1992) 229–245.
  7. S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions”, Z. Phys. C 70 (1996) 665–672, arXiv:hep-ph/9407282.
  8. F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Breaking of factorization of two-particle correlations in hydrodynamics”, Phys. Rev. C 87 (2013) 031901, arXiv:1211.0989 [nucl-th].
  9. U. Heinz, Z. Qiu, and C. Shen, “Fluctuating flow angles and anisotropic flow measurements”, Phys. Rev. C 87 (2013) 034913, arXiv:1302.3535 [nucl-th].
  10. U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826 [nucl-th].
  11. M. Luzum and H. Petersen, “Initial State Fluctuations and Final State Correlations in Relativistic Heavy-Ion Collisions”, J. Phys. G 41 (2014) 063102, arXiv:1312.5503 [nucl-th].
  12. E. Shuryak, “Strongly coupled quark-gluon plasma in heavy ion collisions”, Rev. Mod. Phys. 89 (2017) 035001, arXiv:1412.8393 [hep-ph].
  13. H. Song, Y. Zhou, and K. Gajdosova, “Collective flow and hydrodynamics in large and small systems at the LHC”, Nucl. Sci. Tech. 28 (2017) 99, arXiv:1703.00670 [nucl-th].
  14. P. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics”, Phys. Rev. Lett. 94 (2005) 111601, arXiv:hep-th/0405231 [hep-th].
  15. ALICE Collaboration, S. Acharya et al., “Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC”, JHEP 09 (2017) 032, arXiv:1707.05690 [nucl-ex].
  16. CMS Collaboration, V. Khachatryan et al., “Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions”, Phys. Rev. C 92 (2015) 034911, arXiv:1503.01692 [nucl-ex].
  17. ATLAS Collaboration, M. Aaboud et al., “Measurement of longitudinal flow decorrelations in Pb+Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\text{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 2.76 and 5.02 TeV with the ATLAS detector”, Eur. Phys. J. C 78 (2018) 142, arXiv:1709.02301 [nucl-ex].
  18. ATLAS Collaboration, G. Aad et al., “Longitudinal Flow Decorrelations in Xe+Xe Collisions at sNN=5.44subscript𝑠NN5.44\sqrt{s_{\mathrm{NN}}}=5.44square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.44 TeV with the ATLAS Detector”, Phys. Rev. Lett. 126 (2021) 122301, arXiv:2001.04201 [nucl-ex].
  19. J. Jia and P. Huo, “Forward-backward eccentricity and participant-plane angle fluctuations and their influences on longitudinal dynamics of collective flow”, Phys. Rev. C 90 (2014) 034915, arXiv:1403.6077 [nucl-th].
  20. P. Bozek and W. Broniowski, “The torque effect and fluctuations of entropy deposition in rapidity in ultra-relativistic nuclear collisions”, Phys. Lett. B 752 (2016) 206–211, arXiv:1506.02817 [nucl-th].
  21. L.-G. Pang, H. Petersen, G.-Y. Qin, V. Roy, and X.-N. Wang, “Decorrelation of anisotropic flow along the longitudinal direction”, Eur. Phys. J. A 52 (2016) 97, arXiv:1511.04131 [nucl-th].
  22. P. Bozek and W. Broniowski, “Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions”, Phys. Rev. C 97 (2018) 034913, arXiv:1711.03325 [nucl-th].
  23. K. Xiao, F. Liu, and F. Wang, “Event-plane decorrelation over pseudorapidity and its effect on azimuthal anisotropy measurements in relativistic heavy-ion collisions”, Phys. Rev. C 87 (2013) 011901, arXiv:1208.1195 [nucl-th].
  24. A. Sakai, K. Murase, and T. Hirano, “Rapidity decorrelation of anisotropic flow caused by hydrodynamic fluctuations”, Phys. Rev. C 102 (2020) 064903, arXiv:2003.13496 [nucl-th].
  25. G. Denicol, A. Monnai, and B. Schenke, “Moving forward to constrain the shear viscosity of QCD matter”, Phys. Rev. Lett. 116 (2016) 212301, arXiv:1512.01538 [nucl-th].
  26. E. Molnar, H. Holopainen, P. Huovinen, and H. Niemi, “Influence of temperature-dependent shear viscosity on elliptic flow at backward and forward rapidities in ultrarelativistic heavy-ion collisions”, Phys. Rev. C 90 (2014) 044904, arXiv:1407.8152 [nucl-th].
  27. C. Shen and B. Schenke, “Dynamical initial state model for relativistic heavy-ion collisions”, Phys. Rev. C 97 (2018) 024907, arXiv:1710.00881 [nucl-th].
  28. K. J. Eskola, H. Niemi, R. Paatelainen, and K. Tuominen, “Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider”, Phys. Rev. C 97 (2018) 034911, arXiv:1711.09803 [hep-ph].
  29. G. Giacalone, J. Noronha-Hostler, M. Luzum, and J.-Y. Ollitrault, “Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions”, Phys. Rev. C 97 (2018) 034904, arXiv:1711.08499 [nucl-th].
  30. ALICE Collaboration, S. Acharya et al., “Anisotropic flow in Xe-Xe collisions at sNN=5.44subscript𝑠NN5.44{\sqrt{s_{\rm{NN}}}=5.44}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.44 TeV”, Phys. Lett. B 784 (2018) 82–95, arXiv:1805.01832 [nucl-ex].
  31. N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “A New method for measuring azimuthal distributions in nucleus-nucleus collisions”, Phys. Rev. C 63 (2001) 054906, arXiv:nucl-th/0007063.
  32. A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations”, Phys. Rev. C 89 (2014) 064904, arXiv:1312.3572 [nucl-ex].
  33. CMS Collaboration, A. M. Sirunyan et al., “Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions”, Phys. Rev. C 98 (2018) 044902, arXiv:1710.07864 [nucl-ex].
  34. ALICE Collaboration, J. Adam et al., “Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B 762 (2016) 376–388, arXiv:1605.02035 [nucl-ex].
  35. X.-Y. Wu, L.-G. Pang, G.-Y. Qin, and X.-N. Wang, “Longitudinal fluctuations and decorrelations of anisotropic flows at energies available at the CERN Large Hadron Collider and at the BNL Relativistic Heavy Ion Collider”, Phys. Rev. C 98 (2018) 024913, arXiv:1805.03762 [nucl-th].
  36. Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, “A Multi-phase transport model for relativistic heavy ion collisions”, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-th/0411110.
  37. J. Jia, M. Zhou, and A. Trzupek, “Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants”, Phys. Rev. C 96 (2017) 034906, arXiv:1701.03830 [nucl-th].
  38. P. Huo, K. Gajdošová, J. Jia, and Y. Zhou, “Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems”, Phys. Lett. B 777 (2018) 201–206, arXiv:1710.07567 [nucl-ex].
  39. ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
  40. ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
  41. ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
  42. J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
  43. ALICE Collaboration, P. Cortese et al., “ALICE technical design report on forward detectors: FMD, T0 and V0”, CERN-LHCC-2004-025. https://cds.cern.ch/record/781854.
  44. ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
  45. ALICE Collaboration, J. Adam et al., “Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Lett. B 754 (2016) 373–385, arXiv:1509.07299 [nucl-ex].
  46. ALICE Collaboration, S. Acharya et al., “The ALICE definition of primary particles”, ALICE-PUBLIC-2017-005. https://cds.cern.ch/record/2270008.
  47. ALICE Collaboration, B. Abelev et al., “Centrality determination of Pb-Pb collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV with ALICE”, Phys. Rev. C 88 (2013) 044909, arXiv:1301.4361 [nucl-ex].
  48. ALICE Collaboration, “Centrality determination in heavy ion collisions”, ALICE-PUBLIC-2018-011. https://cds.cern.ch/record/2636623.
  49. ALICE Collaboration, S. Acharya et al., “Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG =5.44TeV”, Phys. Lett. B 790 (2019) 35–48, arXiv:1805.04432 [nucl-ex].
  50. ALICE Collaboration, J. Adam et al., “Anisotropic flow of charged particles in Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 116 (2016) 132302, arXiv:1602.01119 [nucl-ex].
  51. S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang, “Elliptic flow in the Gaussian model of eccentricity fluctuations”, Phys. Lett. B 659 (2008) 537–541, arXiv:0708.0800 [nucl-th].
  52. L. Yan and J.-Y. Ollitrault, “Universal fluctuation-driven eccentricities in proton-proton, proton-nucleus and nucleus-nucleus collisions”, Phys. Rev. Lett. 112 (2014) 082301, arXiv:1312.6555 [nucl-th].
  53. L. Yan, J.-Y. Ollitrault, and A. M. Poskanzer, “Eccentricity distributions in nucleus-nucleus collisions”, Phys. Rev. C 90 (2014) 024903, arXiv:1405.6595 [nucl-th].
  54. H. Grönqvist, J.-P. Blaizot, and J.-Y. Ollitrault, “Non-Gaussian eccentricity fluctuations”, Phys. Rev. C 94 (2016) 034905, arXiv:1604.07230 [nucl-th].
  55. H. Holopainen, H. Niemi, and K. J. Eskola, “Event-by-event hydrodynamics and elliptic flow from fluctuating initial state”, Phys. Rev. C 83 (2011) 034901, arXiv:1007.0368 [hep-ph].
  56. G.-Y. Qin, H. Petersen, S. A. Bass, and B. Muller, “Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions”, Phys. Rev. C 82 (2010) 064903, arXiv:1009.1847 [nucl-th].
  57. Z. Qiu and U. W. Heinz, “Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs”, Phys. Rev. C 84 (2011) 024911, arXiv:1104.0650 [nucl-th].
  58. C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan, “Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics”, Phys. Rev. Lett. 110 (2013) 012302, arXiv:1209.6330 [nucl-th].
  59. H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, “Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions”, Phys. Rev. C 87 (2013) 054901, arXiv:1212.1008 [nucl-th].
  60. ALICE Collaboration, S. Acharya et al., “Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 and 2.76 TeV”, JHEP 07 (2018) 103, arXiv:1804.02944 [nucl-ex].
  61. CMS Collaboration, A. M. Sirunyan et al., “Charged-particle angular correlations in XeXe collisions at sNN=subscript𝑠NNabsent\sqrt{s_{{}_{\mathrm{NN}}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT roman_NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 5.44 TeV”, Phys. Rev. C 100 (2019) 044902, arXiv:1901.07997 [hep-ex].
  62. G.-L. Ma and Z.-W. Lin, “Predictions for sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV Pb+Pb Collisions from a Multi-Phase Transport Model”, Phys. Rev. C 93 (2016) 054911, arXiv:1601.08160 [nucl-th].
  63. M. Gyulassy and X.-N. Wang, “HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions”, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl-th/9502021 [nucl-th].
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com