Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Powering an autonomous clock with quantum electromechanics (2307.09122v2)

Published 18 Jul 2023 in quant-ph

Abstract: We theoretically analyse an autonomous clock comprising a nanoelectromechanical system, which undergoes self-oscillations driven by electron tunnelling. The periodic mechanical motion behaves as the clockwork, similar to the swinging of a pendulum, while induced oscillations in the electrical current can be used to read out the ticks. We simulate the dynamics of the system in the quasi-adiabatic limit of slow mechanical motion, allowing us to infer statistical properties of the clock's ticks from the current auto-correlation function. The distribution of individual ticks exhibits a tradeoff between accuracy, resolution, and dissipation, as expected from previous literature. Going beyond the distribution of individual ticks, we investigate how clock accuracy varies over different integration times by computing the Allan variance. We observe non-monotonic features in the Allan variance as a function of time and applied voltage, which can be explained by the presence of temporal correlations between ticks. These correlations are shown to yield a precision advantage for timekeeping over the timescales that the correlations persist. Our results illustrate the non-trivial features of the tick series produced by nanoscale clocks, and pave the way for experimental investigation of clock thermodynamics using nanoelectromechanical systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. H. Salecker and E. P. Wigner, Phys. Rev. 109, 571 (1958).
  2. A. Peres, Am. J. Phys. 48, 552 (1980).
  3. D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983).
  4. D. Janzing and T. Beth, IEEE Transactions on Information Theory 49, 230 (2003), arXiv:0112138 .
  5. S. Ranković, Y.-C. Liang, and R. Renner, Quantum clocks and their synchronisation - the Alternate Ticks Game (2015), arXiv:1506.01373.
  6. M. P. Woods, R. Silva, and J. Oppenheim, Annales Henri Poincaré 20, 125 (2019), arXiv:1607.04591 .
  7. M. P. Woods, Quantum 5, 381 (2021), arXiv:2005.04628 .
  8. A. C. Barato and U. Seifert, Phys. Rev. X 6, 041053 (2016).
  9. G. J. Milburn, Contemp. Phys. 61, 69 (2020), arXiv:2007.02217 .
  10. A. P. T. Dost and M. P. Woods, Quantum advantages in timekeeping: dimensional advantage, entropic advantage and how to realise them via Berry phases and ultra-regular spontaneous emission (2023), arXiv:2303.10029.
  11. A. C. Barato and U. Seifert, Phys. Rev. Letters 114, 158101 (2015), arXiv:1502.05944 .
  12. J. P. Garrahan, Phys. Rev. E 95, 032134 (2017), arXiv:1701.00539 .
  13. I. D. Terlizzi and M. Baiesi, J. Phys. A: Mathematical and Theoretical 52, 02LT03 (2018).
  14. K. Ptaszyński, Phys. Rev. B 98, 085425 (2018), arXiv:1805.11301 .
  15. B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018), arXiv:1806.05588 .
  16. A. S. L. Malabarba, A. J. Short, and P. Kammerlander, NJP 17, 045027 (2015), arXiv:1412.1338 .
  17. M. F. Frenzel, D. Jennings, and T. Rudolph, NJP 18, 023037 (2016), arXiv:1508.02720 .
  18. M. P. Woods and M. Horodecki, Phys. Rev. X 13, 011016 (2023), arXiv:1912.05562 .
  19. H. Ball, W. D. Oliver, and M. J. Biercuk, npj Quantum Inf. 2, 1 (2016), arXiv:1602.04551 .
  20. E. H. Hauge and J. A. Støvneng, Reviews of Modern Phys. 61, 917 (1989).
  21. R. Silva, N. Nurgalieva, and H. Wilming, Ticking clocks in quantum theory (2023), arXiv:2306.01829.
  22. P. Pietzonka, Phys. Rev. Letters 128, 130606 (2022), arXiv:2110.02213 .
  23. A. Jenkins, Phys. Reports Self-oscillation, 525, 167 (2013), arXiv:1109.6640 .
  24. A. Bachtold, J. Moser, and M. I. Dykman, Rev. Mod. Phys. 94, 045005 (2022), arXiv:2202.01819 .
  25. F. Pistolesi and R. Fazio, New Journal of Physics 8, 113 (2006), arXiv:0608538 .
  26. T. c. v. Novotný, A. Donarini, and A.-P. Jauho, Phys. Rev. Lett. 90, 256801 (2003), arXiv:0301441 .
  27. Y. M. Blanter, O. Usmani, and Y. V. Nazarov, Phys. Rev. Lett. 93, 136802 (2004), arXiv:0404615 .
  28. Y. M. Blanter, O. Usmani, and Y. V. Nazarov, Phys. Rev. Lett. 94, 049904 (2005).
  29. A. A. Clerk and S. Bennett, New Journal of Physics 7, 238 (2005), arXiv:0507646 .
  30. S. D. Bennett and A. A. Clerk, Phys. Rev. B 74, 201301 (2006).
  31. O. Usmani, Y. M. Blanter, and Y. V. Nazarov, Phys. Rev. B 75, 195312 (2007), arXiv:0603017 .
  32. P. Strasberg, C. W. Wächtler, and G. Schaller, Phys. Rev. Lett. 126, 180605 (2021), arXiv:2101.05027 .
  33. O. Culhane, M. T. Mitchison, and J. Goold, Phys. Rev. E 106, L032104 (2022), arXiv:2201.07819 .
  34. D. Allan, Proceedings of the IEEE 54, 221 (1966).
  35. C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, Berlin).
  36. C. Gardiner, Stochastic Methods (Springer Berlin Heidelberg, 2009).
  37. D. A. Ryndyk, Green functions, in Theory of Quantum transport at nanoscale an introduction (Springer International Publishing, 2016).
  38. S. A. Gurvitz and Y. S. Prager, Phys. Rev. B 53, 15932 (1996).
  39. M. J. Kewming, M. T. Mitchison, and G. T. Landi, Phys. Rev. A 106, 033707 (2022), arXiv:2205.02622 .
  40. Z. Aminzare, P. Holmes, and V. Srivastava, in 2019 IEEE 58th Conference on Decision and Control (CDC) (IEEE, 2019).
  41. D. R. Cox, Renewal theory (Methuen, 1967).
  42. M. B. Altaie, D. Hodgson, and A. Beige, Frontiers in Physics 10, 897305 (2022).
  43. T. Van Vu and Y. Hasegawa, Phys. Rev. E 100, 032130 (2019), arXiv:1901.05715 .
  44. C.-K. Chan, T. E. Lee, and S. Gopalakrishnan, Phys. Rev. A 91, 051601 (2015), arXiv:1501.00979 .
  45. B. Buča, J. Tindall, and D. Jaksch, Nature Communications 10, 1730 (2019), arXiv:1804.06744 .
  46. F. Wilczek, Phys. Rev. Letters 109, 160401 (2012), arXiv:1202.2539 .
  47. K. Sacha and J. Zakrzewski, Reports on Progress in Phys. 81, 016401 (2018), arXiv:1704.03735 .
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com