Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Tabular Machine Learning Methods for Predicting Gas Turbine Emissions (2307.08386v1)

Published 17 Jul 2023 in cs.LG

Abstract: Predicting emissions for gas turbines is critical for monitoring harmful pollutants being released into the atmosphere. In this study, we evaluate the performance of machine learning models for predicting emissions for gas turbines. We compare an existing predictive emissions model, a first principles-based Chemical Kinetics model, against two machine learning models we developed based on SAINT and XGBoost, to demonstrate improved predictive performance of nitrogen oxides (NOx) and carbon monoxide (CO) using machine learning techniques. Our analysis utilises a Siemens Energy gas turbine test bed tabular dataset to train and validate the machine learning models. Additionally, we explore the trade-off between incorporating more features to enhance the model complexity, and the resulting presence of increased missing values in the dataset.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.