Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probing topology in nonlinear topological materials using numerical $K$-theory (2307.08374v1)

Published 17 Jul 2023 in cond-mat.mes-hall, cond-mat.mtrl-sci, math-ph, math.MP, and physics.optics

Abstract: Nonlinear topological insulators have garnered substantial recent attention as they have both enabled the discovery of new physics due to interparticle interactions, and may have applications in photonic devices such as topological lasers and frequency combs. However, due to the local nature of nonlinearities, previous attempts to classify the topology of nonlinear systems have required significant approximations that must be tailored to individual systems. Here, we develop a general framework for classifying the topology of nonlinear materials in any discrete symmetry class and any physical dimension. Our approach is rooted in a numerical $K$-theoretic method called the spectral localizer, which leverages a real-space perspective of a system to define local topological markers and a local measure of topological protection. Our nonlinear spectral localizer framework yields a quantitative definition of topologically non-trivial nonlinear modes that are distinguished by the appearance of a topological interface surrounding the mode. Moreover, we show how the nonlinear spectral localizer can be used to understand a system's topological dynamics, i.e., the time-evolution of nonlinearly induced topological domains within a system. We anticipate that this framework will enable the discovery and development of novel topological systems across a broad range of nonlinear materials.

Citations (9)

Summary

We haven't generated a summary for this paper yet.