Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Protection in a Strongly Nonlinear Interface Lattice (2105.08137v3)

Published 17 May 2021 in physics.app-ph

Abstract: Mechanical topological insulators are well understood for linear and weakly nonlinear systems, however traditional analysis methods break down for strongly nonlinear systems since linear methods can not be applied in that case. We study one such system in the form of a one-dimensional mechanical analog of the Su-Schrieffer-Heeger interface model with strong nonlinearity of the cubic form. The frequency-energy dependence of the nonlinear bulk modes and topologically insulated mode is explored using Numerical continuation of the system's nonlinear normal modes (NNMs), and the linear stability of the NNMs are investigated using Floquet Multipliers (FMs) and Krein signature analysis. We find that the nonlinear topological lattice supports a family of topologically insulated NNMs that are parameterized by the total energy of the system and are stable within a range of frequencies. Next, it is shown that empirical calculations of the geometric Zak Phase can define an energy threshold to predict the excitability of the nonlinear topological mode, and that this threshold coincides with the energy that the topological NNM intersects the linear bulk-spectrum. These predictions are validated with numerical simulations of the nonlinear topological system. These results are also tested for parametric perturbations which preserve and break chirality in the system. Thus, we provide a new method for analyzing and predicting the existence of topologically insulated modes in a strongly nonlinear lattice based on the physical observable of band topology.

Summary

We haven't generated a summary for this paper yet.